Yaakov Kleeorin, William P Russ, Olivier Rivoire, Rama Ranganathan
{"title":"蛋白质中的欠采样和共同进化推论","authors":"Yaakov Kleeorin, William P Russ, Olivier Rivoire, Rama Ranganathan","doi":"10.1016/j.cels.2022.12.013","DOIUrl":null,"url":null,"abstract":"<p><p>Protein structure, function, and evolution depend on local and collective epistatic interactions between amino acids. A powerful approach to defining these interactions is to construct models of couplings between amino acids that reproduce the empirical statistics (frequencies and correlations) observed in sequences comprising a protein family. The top couplings are then interpreted. Here, we show that as currently implemented, this inference unequally represents epistatic interactions, a problem that fundamentally arises from limited sampling of sequences in the context of distinct scales at which epistasis occurs in proteins. We show that these issues explain the ability of current approaches to predict tertiary contacts between amino acids and the inability to obviously expose larger networks of functionally relevant, collectively evolving residues called sectors. This work provides a necessary foundation for more deeply understanding and improving evolution-based models of proteins.</p>","PeriodicalId":54348,"journal":{"name":"Cell Systems","volume":"14 3","pages":"210-219.e7"},"PeriodicalIF":9.0000,"publicationDate":"2023-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10911952/pdf/","citationCount":"0","resultStr":"{\"title\":\"Undersampling and the inference of coevolution in proteins.\",\"authors\":\"Yaakov Kleeorin, William P Russ, Olivier Rivoire, Rama Ranganathan\",\"doi\":\"10.1016/j.cels.2022.12.013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Protein structure, function, and evolution depend on local and collective epistatic interactions between amino acids. A powerful approach to defining these interactions is to construct models of couplings between amino acids that reproduce the empirical statistics (frequencies and correlations) observed in sequences comprising a protein family. The top couplings are then interpreted. Here, we show that as currently implemented, this inference unequally represents epistatic interactions, a problem that fundamentally arises from limited sampling of sequences in the context of distinct scales at which epistasis occurs in proteins. We show that these issues explain the ability of current approaches to predict tertiary contacts between amino acids and the inability to obviously expose larger networks of functionally relevant, collectively evolving residues called sectors. This work provides a necessary foundation for more deeply understanding and improving evolution-based models of proteins.</p>\",\"PeriodicalId\":54348,\"journal\":{\"name\":\"Cell Systems\",\"volume\":\"14 3\",\"pages\":\"210-219.e7\"},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2023-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10911952/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Systems\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cels.2022.12.013\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Systems","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cels.2022.12.013","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/23 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Undersampling and the inference of coevolution in proteins.
Protein structure, function, and evolution depend on local and collective epistatic interactions between amino acids. A powerful approach to defining these interactions is to construct models of couplings between amino acids that reproduce the empirical statistics (frequencies and correlations) observed in sequences comprising a protein family. The top couplings are then interpreted. Here, we show that as currently implemented, this inference unequally represents epistatic interactions, a problem that fundamentally arises from limited sampling of sequences in the context of distinct scales at which epistasis occurs in proteins. We show that these issues explain the ability of current approaches to predict tertiary contacts between amino acids and the inability to obviously expose larger networks of functionally relevant, collectively evolving residues called sectors. This work provides a necessary foundation for more deeply understanding and improving evolution-based models of proteins.
Cell SystemsMedicine-Pathology and Forensic Medicine
CiteScore
16.50
自引率
1.10%
发文量
84
审稿时长
42 days
期刊介绍:
In 2015, Cell Systems was founded as a platform within Cell Press to showcase innovative research in systems biology. Our primary goal is to investigate complex biological phenomena that cannot be simply explained by basic mathematical principles. While the physical sciences have long successfully tackled such challenges, we have discovered that our most impactful publications often employ quantitative, inference-based methodologies borrowed from the fields of physics, engineering, mathematics, and computer science. We are committed to providing a home for elegant research that addresses fundamental questions in systems biology.