对数据缺失的多种类型特征进行惩罚回归。

IF 1.5 3区 数学 Q2 STATISTICS & PROBABILITY
Kin Yau Wong, Donglin Zeng, D Y Lin
{"title":"对数据缺失的多种类型特征进行惩罚回归。","authors":"Kin Yau Wong, Donglin Zeng, D Y Lin","doi":"10.5705/ss.202020.0401","DOIUrl":null,"url":null,"abstract":"<p><p>Recent technological advances have made it possible to measure multiple types of many features in biomedical studies. However, some data types or features may not be measured for all study subjects because of cost or other constraints. We use a latent variable model to characterize the relationships across and within data types and to infer missing values from observed data. We develop a penalized-likelihood approach for variable selection and parameter estimation and devise an efficient expectation-maximization algorithm to implement our approach. We establish the asymptotic properties of the proposed estimators when the number of features increases at a polynomial rate of the sample size. Finally, we demonstrate the usefulness of the proposed methods using extensive simulation studies and provide an application to a motivating multi-platform genomics study.</p>","PeriodicalId":49478,"journal":{"name":"Statistica Sinica","volume":"33 2","pages":"633-662"},"PeriodicalIF":1.5000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10187615/pdf/nihms-1764514.pdf","citationCount":"0","resultStr":"{\"title\":\"PENALIZED REGRESSION FOR MULTIPLE TYPES OF MANY FEATURES WITH MISSING DATA.\",\"authors\":\"Kin Yau Wong, Donglin Zeng, D Y Lin\",\"doi\":\"10.5705/ss.202020.0401\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recent technological advances have made it possible to measure multiple types of many features in biomedical studies. However, some data types or features may not be measured for all study subjects because of cost or other constraints. We use a latent variable model to characterize the relationships across and within data types and to infer missing values from observed data. We develop a penalized-likelihood approach for variable selection and parameter estimation and devise an efficient expectation-maximization algorithm to implement our approach. We establish the asymptotic properties of the proposed estimators when the number of features increases at a polynomial rate of the sample size. Finally, we demonstrate the usefulness of the proposed methods using extensive simulation studies and provide an application to a motivating multi-platform genomics study.</p>\",\"PeriodicalId\":49478,\"journal\":{\"name\":\"Statistica Sinica\",\"volume\":\"33 2\",\"pages\":\"633-662\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10187615/pdf/nihms-1764514.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistica Sinica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5705/ss.202020.0401\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistica Sinica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5705/ss.202020.0401","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

最近的技术进步使得在生物医学研究中测量多种类型的许多特征成为可能。然而,由于成本或其他限制,有些数据类型或特征可能无法对所有研究对象进行测量。我们使用潜变量模型来描述数据类型间和数据类型内的关系,并从观察到的数据中推断缺失值。我们开发了一种用于变量选择和参数估计的惩罚似然法,并设计了一种高效的期望最大化算法来实现我们的方法。当特征数量以样本量的多项式速率增加时,我们建立了所提出的估计器的渐近特性。最后,我们通过大量的模拟研究证明了所提方法的实用性,并将其应用于一项激励性的多平台基因组学研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PENALIZED REGRESSION FOR MULTIPLE TYPES OF MANY FEATURES WITH MISSING DATA.

Recent technological advances have made it possible to measure multiple types of many features in biomedical studies. However, some data types or features may not be measured for all study subjects because of cost or other constraints. We use a latent variable model to characterize the relationships across and within data types and to infer missing values from observed data. We develop a penalized-likelihood approach for variable selection and parameter estimation and devise an efficient expectation-maximization algorithm to implement our approach. We establish the asymptotic properties of the proposed estimators when the number of features increases at a polynomial rate of the sample size. Finally, we demonstrate the usefulness of the proposed methods using extensive simulation studies and provide an application to a motivating multi-platform genomics study.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Statistica Sinica
Statistica Sinica 数学-统计学与概率论
CiteScore
2.10
自引率
0.00%
发文量
82
审稿时长
10.5 months
期刊介绍: Statistica Sinica aims to meet the needs of statisticians in a rapidly changing world. It provides a forum for the publication of innovative work of high quality in all areas of statistics, including theory, methodology and applications. The journal encourages the development and principled use of statistical methodology that is relevant for society, science and technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信