Pedro Rendas, Lígia Figueiredo, Carla Machado, António Mourão, Catarina Vidal, Bruno Soares
{"title":"用于高性能植入物制造的3d打印PEEK的机械性能和生物活性:综述。","authors":"Pedro Rendas, Lígia Figueiredo, Carla Machado, António Mourão, Catarina Vidal, Bruno Soares","doi":"10.1007/s40204-022-00214-6","DOIUrl":null,"url":null,"abstract":"<p><p>Polyetheretherketone (PEEK) has stood out as the leading high-performance thermoplastic for the replacement of metals in orthopaedic, trauma and spinal implant applications due to its high biocompatibility and mechanical properties. Despite its potential for custom-made medical devices, 3D-printed PEEK's mechanical performance depends on processing parameters and its bioinertness may hinder bone opposition to the implant. Concerning these challenges, this review focuses on the available literature addressing the improvement of the mechanical performance of PEEK processed through \"fused filament fabrication\" (FFF) along with literature on bioactivation of PEEK for improved osseointegration. The reviewed research suggests that improvements can be achieved in mechanical performance of 3D-printed PEEK with adequate FFF parametrization while different bioactivation techniques can be used to improve the bioperformance of 3D-printed PEEK. The adequate approaches towards these procedures can increase PEEK's potential for the manufacture of high-performance custom-made implantable devices that display improved bone-implant integration and prevent stress shielding of the treated bone.</p>","PeriodicalId":20691,"journal":{"name":"Progress in Biomaterials","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10154446/pdf/40204_2022_Article_214.pdf","citationCount":"3","resultStr":"{\"title\":\"Mechanical performance and bioactivation of 3D-printed PEEK for high-performance implant manufacture: a review.\",\"authors\":\"Pedro Rendas, Lígia Figueiredo, Carla Machado, António Mourão, Catarina Vidal, Bruno Soares\",\"doi\":\"10.1007/s40204-022-00214-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Polyetheretherketone (PEEK) has stood out as the leading high-performance thermoplastic for the replacement of metals in orthopaedic, trauma and spinal implant applications due to its high biocompatibility and mechanical properties. Despite its potential for custom-made medical devices, 3D-printed PEEK's mechanical performance depends on processing parameters and its bioinertness may hinder bone opposition to the implant. Concerning these challenges, this review focuses on the available literature addressing the improvement of the mechanical performance of PEEK processed through \\\"fused filament fabrication\\\" (FFF) along with literature on bioactivation of PEEK for improved osseointegration. The reviewed research suggests that improvements can be achieved in mechanical performance of 3D-printed PEEK with adequate FFF parametrization while different bioactivation techniques can be used to improve the bioperformance of 3D-printed PEEK. The adequate approaches towards these procedures can increase PEEK's potential for the manufacture of high-performance custom-made implantable devices that display improved bone-implant integration and prevent stress shielding of the treated bone.</p>\",\"PeriodicalId\":20691,\"journal\":{\"name\":\"Progress in Biomaterials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10154446/pdf/40204_2022_Article_214.pdf\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Biomaterials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s40204-022-00214-6\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40204-022-00214-6","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Mechanical performance and bioactivation of 3D-printed PEEK for high-performance implant manufacture: a review.
Polyetheretherketone (PEEK) has stood out as the leading high-performance thermoplastic for the replacement of metals in orthopaedic, trauma and spinal implant applications due to its high biocompatibility and mechanical properties. Despite its potential for custom-made medical devices, 3D-printed PEEK's mechanical performance depends on processing parameters and its bioinertness may hinder bone opposition to the implant. Concerning these challenges, this review focuses on the available literature addressing the improvement of the mechanical performance of PEEK processed through "fused filament fabrication" (FFF) along with literature on bioactivation of PEEK for improved osseointegration. The reviewed research suggests that improvements can be achieved in mechanical performance of 3D-printed PEEK with adequate FFF parametrization while different bioactivation techniques can be used to improve the bioperformance of 3D-printed PEEK. The adequate approaches towards these procedures can increase PEEK's potential for the manufacture of high-performance custom-made implantable devices that display improved bone-implant integration and prevent stress shielding of the treated bone.
期刊介绍:
Progress in Biomaterials is a multidisciplinary, English-language publication of original contributions and reviews concerning studies of the preparation, performance and evaluation of biomaterials; the chemical, physical, biological and mechanical behavior of materials both in vitro and in vivo in areas such as tissue engineering and regenerative medicine, drug delivery and implants where biomaterials play a significant role. Including all areas of: design; preparation; performance and evaluation of nano- and biomaterials in tissue engineering; drug delivery systems; regenerative medicine; implantable medical devices; interaction of cells/stem cells on biomaterials and related applications.