{"title":"ZccE,一种参与变形链球菌生物膜形成和竞争的p型atp酶。","authors":"Yangyang Pan, Jing Zou, Keke Zhang, Xiping Wang, Qizhao Ma, Liqin Mei, Yuqing Li, Yihuai Pan","doi":"10.1111/omi.12405","DOIUrl":null,"url":null,"abstract":"<p><p>Most living organisms require zinc for survival; however, excessive amounts of this trace element can be toxic. Therefore, the frequent fluctuations of salivary zinc, caused by the low physiological level and the frequent introduction of exogenous zinc ions, present a serious challenge for bacteria colonizing the oral cavity. Streptococcus mutans is considered one of the main bacterial pathobiont in dental caries. Here, we verified the role of a P-type ATPase ZccE as the main zinc-exporting transporter in S. mutans and delineated the effects of zinc toxification caused by zccE deletion in the physiology of this bacterium. The deletion of the gene zccE severely impaired the ability of S. mutans to grow under high zinc stress conditions. Intracellular metal quantification using inductively coupled plasma optical emission spectrometer revealed that the zccE mutant exhibited approximately two times higher zinc accumulation than the wild type when grown in the presence of a subinhibitory zinc concentration. Biofilm formation analysis revealed less single-strain biofilm formation and competitive weakness in the dual-species biofilm formed with Streptococcus sanguinis for zccE mutant under high zinc stress. The quantitive reverse transcription polymerase chain reaction test revealed decreased expressions of gtfB, gtfC, and nlmC in the mutant strain under excessive zinc treatment. Collectively, these findings suggest that ZccE plays an important role in the zinc detoxification of S. mutans and that zinc is a growth-limiting factor for S. mutans within the dental biofilm.</p>","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":"38 3","pages":"198-211"},"PeriodicalIF":2.8000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ZccE, a P-type ATPase contributing to biofilm formation and competitiveness in Streptococcus mutans.\",\"authors\":\"Yangyang Pan, Jing Zou, Keke Zhang, Xiping Wang, Qizhao Ma, Liqin Mei, Yuqing Li, Yihuai Pan\",\"doi\":\"10.1111/omi.12405\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Most living organisms require zinc for survival; however, excessive amounts of this trace element can be toxic. Therefore, the frequent fluctuations of salivary zinc, caused by the low physiological level and the frequent introduction of exogenous zinc ions, present a serious challenge for bacteria colonizing the oral cavity. Streptococcus mutans is considered one of the main bacterial pathobiont in dental caries. Here, we verified the role of a P-type ATPase ZccE as the main zinc-exporting transporter in S. mutans and delineated the effects of zinc toxification caused by zccE deletion in the physiology of this bacterium. The deletion of the gene zccE severely impaired the ability of S. mutans to grow under high zinc stress conditions. Intracellular metal quantification using inductively coupled plasma optical emission spectrometer revealed that the zccE mutant exhibited approximately two times higher zinc accumulation than the wild type when grown in the presence of a subinhibitory zinc concentration. Biofilm formation analysis revealed less single-strain biofilm formation and competitive weakness in the dual-species biofilm formed with Streptococcus sanguinis for zccE mutant under high zinc stress. The quantitive reverse transcription polymerase chain reaction test revealed decreased expressions of gtfB, gtfC, and nlmC in the mutant strain under excessive zinc treatment. Collectively, these findings suggest that ZccE plays an important role in the zinc detoxification of S. mutans and that zinc is a growth-limiting factor for S. mutans within the dental biofilm.</p>\",\"PeriodicalId\":18815,\"journal\":{\"name\":\"Molecular Oral Microbiology\",\"volume\":\"38 3\",\"pages\":\"198-211\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Oral Microbiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/omi.12405\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"DENTISTRY, ORAL SURGERY & MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Oral Microbiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/omi.12405","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
ZccE, a P-type ATPase contributing to biofilm formation and competitiveness in Streptococcus mutans.
Most living organisms require zinc for survival; however, excessive amounts of this trace element can be toxic. Therefore, the frequent fluctuations of salivary zinc, caused by the low physiological level and the frequent introduction of exogenous zinc ions, present a serious challenge for bacteria colonizing the oral cavity. Streptococcus mutans is considered one of the main bacterial pathobiont in dental caries. Here, we verified the role of a P-type ATPase ZccE as the main zinc-exporting transporter in S. mutans and delineated the effects of zinc toxification caused by zccE deletion in the physiology of this bacterium. The deletion of the gene zccE severely impaired the ability of S. mutans to grow under high zinc stress conditions. Intracellular metal quantification using inductively coupled plasma optical emission spectrometer revealed that the zccE mutant exhibited approximately two times higher zinc accumulation than the wild type when grown in the presence of a subinhibitory zinc concentration. Biofilm formation analysis revealed less single-strain biofilm formation and competitive weakness in the dual-species biofilm formed with Streptococcus sanguinis for zccE mutant under high zinc stress. The quantitive reverse transcription polymerase chain reaction test revealed decreased expressions of gtfB, gtfC, and nlmC in the mutant strain under excessive zinc treatment. Collectively, these findings suggest that ZccE plays an important role in the zinc detoxification of S. mutans and that zinc is a growth-limiting factor for S. mutans within the dental biofilm.
期刊介绍:
Molecular Oral Microbiology publishes high quality research papers and reviews on fundamental or applied molecular studies of microorganisms of the oral cavity and respiratory tract, host-microbe interactions, cellular microbiology, molecular ecology, and immunological studies of oral and respiratory tract infections.
Papers describing work in virology, or in immunology unrelated to microbial colonization or infection, will not be acceptable. Studies of the prevalence of organisms or of antimicrobials agents also are not within the scope of the journal.
The journal does not publish Short Communications or Letters to the Editor.
Molecular Oral Microbiology is published bimonthly.