基于连接体的性状宽恕预测模型。

IF 3.9 2区 医学 Q2 NEUROSCIENCES
Jingyu Li, Jiang Qiu, Haijiang Li
{"title":"基于连接体的性状宽恕预测模型。","authors":"Jingyu Li,&nbsp;Jiang Qiu,&nbsp;Haijiang Li","doi":"10.1093/scan/nsad002","DOIUrl":null,"url":null,"abstract":"<p><p>Forgiveness is a positive, prosocial manner of reacting to transgressions and is strongly associated with mental health and well-being. Despite recent studies exploring the neural mechanisms underlying forgiveness, a model capable of predicting trait forgiveness at the individual level has not been developed. Herein, we applied a machine-learning approach, connectome-based predictive modeling (CPM), with whole-brain resting-state functional connectivity (rsFC) to predict individual differences in trait forgiveness in a training set (dataset 1, N = 100, 35 men, 17-24 years). As a result, CPM successfully predicted individual trait forgiveness based on whole-brain rsFC, especially via the functional connectivity of the limbic, prefrontal and temporal areas, which are key contributors to the prediction model comprising regions previously implicated in forgiveness. These regions include the retrosplenial cortex, temporal pole, dorsolateral prefrontal cortex (PFC), dorsal anterior cingulate cortex, precuneus and dorsal posterior cingulate cortex. Importantly, this predictive model could be successfully generalized to an independent sample (dataset 2, N = 71, 17 men, 16-25 years). These findings highlight the important roles of the limbic system, PFC and temporal region in trait forgiveness prediction and represent the initial steps toward establishing an individualized prediction model of forgiveness.</p>","PeriodicalId":21789,"journal":{"name":"Social cognitive and affective neuroscience","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/d5/80/nsad002.PMC9972814.pdf","citationCount":"0","resultStr":"{\"title\":\"Connectome-based predictive modeling of trait forgiveness.\",\"authors\":\"Jingyu Li,&nbsp;Jiang Qiu,&nbsp;Haijiang Li\",\"doi\":\"10.1093/scan/nsad002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Forgiveness is a positive, prosocial manner of reacting to transgressions and is strongly associated with mental health and well-being. Despite recent studies exploring the neural mechanisms underlying forgiveness, a model capable of predicting trait forgiveness at the individual level has not been developed. Herein, we applied a machine-learning approach, connectome-based predictive modeling (CPM), with whole-brain resting-state functional connectivity (rsFC) to predict individual differences in trait forgiveness in a training set (dataset 1, N = 100, 35 men, 17-24 years). As a result, CPM successfully predicted individual trait forgiveness based on whole-brain rsFC, especially via the functional connectivity of the limbic, prefrontal and temporal areas, which are key contributors to the prediction model comprising regions previously implicated in forgiveness. These regions include the retrosplenial cortex, temporal pole, dorsolateral prefrontal cortex (PFC), dorsal anterior cingulate cortex, precuneus and dorsal posterior cingulate cortex. Importantly, this predictive model could be successfully generalized to an independent sample (dataset 2, N = 71, 17 men, 16-25 years). These findings highlight the important roles of the limbic system, PFC and temporal region in trait forgiveness prediction and represent the initial steps toward establishing an individualized prediction model of forgiveness.</p>\",\"PeriodicalId\":21789,\"journal\":{\"name\":\"Social cognitive and affective neuroscience\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2023-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/d5/80/nsad002.PMC9972814.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Social cognitive and affective neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/scan/nsad002\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Social cognitive and affective neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/scan/nsad002","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

宽恕是一种积极的、亲社会的对过错的反应方式,与心理健康和幸福密切相关。尽管最近的研究探索了宽恕背后的神经机制,但一个能够在个体水平上预测特质宽恕的模型尚未开发出来。在此,我们应用机器学习方法,基于连接体的预测建模(CPM)和全脑静息状态功能连接(rsFC)来预测训练集(数据集1,N = 100, 35名男性,17-24岁)中性状宽恕的个体差异。因此,CPM成功地预测了基于全脑rsFC的个体特征宽恕,特别是通过边缘、前额叶和颞叶区域的功能连接,这些区域是预测模型的关键贡献者,包括先前涉及宽恕的区域。这些区域包括脾后皮质、颞极、背外侧前额皮质(PFC)、前扣带背皮质、楔前叶和后扣带背皮质。重要的是,该预测模型可以成功地推广到一个独立的样本(数据集2,N = 71, 17名男性,16-25岁)。这些发现突出了边缘系统、PFC和颞叶区域在宽恕预测中的重要作用,并代表了建立宽恕个性化预测模型的初步步骤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Connectome-based predictive modeling of trait forgiveness.

Forgiveness is a positive, prosocial manner of reacting to transgressions and is strongly associated with mental health and well-being. Despite recent studies exploring the neural mechanisms underlying forgiveness, a model capable of predicting trait forgiveness at the individual level has not been developed. Herein, we applied a machine-learning approach, connectome-based predictive modeling (CPM), with whole-brain resting-state functional connectivity (rsFC) to predict individual differences in trait forgiveness in a training set (dataset 1, N = 100, 35 men, 17-24 years). As a result, CPM successfully predicted individual trait forgiveness based on whole-brain rsFC, especially via the functional connectivity of the limbic, prefrontal and temporal areas, which are key contributors to the prediction model comprising regions previously implicated in forgiveness. These regions include the retrosplenial cortex, temporal pole, dorsolateral prefrontal cortex (PFC), dorsal anterior cingulate cortex, precuneus and dorsal posterior cingulate cortex. Importantly, this predictive model could be successfully generalized to an independent sample (dataset 2, N = 71, 17 men, 16-25 years). These findings highlight the important roles of the limbic system, PFC and temporal region in trait forgiveness prediction and represent the initial steps toward establishing an individualized prediction model of forgiveness.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.80
自引率
4.80%
发文量
62
审稿时长
4-8 weeks
期刊介绍: SCAN will consider research that uses neuroimaging (fMRI, MRI, PET, EEG, MEG), neuropsychological patient studies, animal lesion studies, single-cell recording, pharmacological perturbation, and transcranial magnetic stimulation. SCAN will also consider submissions that examine the mediational role of neural processes in linking social phenomena to physiological, neuroendocrine, immunological, developmental, and genetic processes. Additionally, SCAN will publish papers that address issues of mental and physical health as they relate to social and affective processes (e.g., autism, anxiety disorders, depression, stress, effects of child rearing) as long as cognitive neuroscience methods are used.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信