Hemen Ved, Gaurav Doshi, Nirav Bhatia, Pravin Kale
{"title":"甲氧氯普胺对斑马鱼长期蛋氨酸暴露的潜在抗精神病药物作用。","authors":"Hemen Ved, Gaurav Doshi, Nirav Bhatia, Pravin Kale","doi":"10.1089/zeb.2022.0033","DOIUrl":null,"url":null,"abstract":"<p><p>Methionine (MET) contributes to brain function and is required for proper functioning of the central nervous system. However, exceptionally high levels of MET and its metabolites in plasma have been found to be toxic and can lead to cell alterations. Long-term exposure to MET has been shown to mimic psychotic symptoms in schizophrenic patients and rodents. The present study evaluated behavioral and neurochemical effects of long-term exposure to MET in zebrafish. Five groups of zebrafish were exposed to MET at a concentration of 4.5 mM for 7 days, along with acute exposure to 25 μM of clozapine and 750, 1000, and 1250 μM of metoclopramide. In contrast, the normal group was exposed to only water and dimethyl sulfoxide. After the treatment, social interaction, anxiety, memory, and locomotion of zebrafish and serotonin levels in zebrafish brains were evaluated. Our results showed that metoclopramide was not only beneficial in improving MET-induced cognitive impairment but it also prevented social withdrawal in zebrafish exposed to MET. In addition, metoclopramide reversed anxiety-like behavior, as indicated by significant changes in locomotion activity. Despite slight changes in serotonin levels in the zebrafish brain, an <i>in vitro</i> serotonin assay failed to demonstrate significant differences between the disease control, normal, and two treatment groups. Finally, results from the study showed that repeated administration of MET induced schizophrenia-like symptoms, although metoclopramide ameliorated the MET-mediated negative symptoms and cognitive deficits in zebrafish. Overall, our findings suggest a new perspective to further explore the antipsychotic properties of metoclopramide.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Metoclopramide as a Potential Antipsychotic Against Long-Term Methionine Exposure in Zebrafish.\",\"authors\":\"Hemen Ved, Gaurav Doshi, Nirav Bhatia, Pravin Kale\",\"doi\":\"10.1089/zeb.2022.0033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Methionine (MET) contributes to brain function and is required for proper functioning of the central nervous system. However, exceptionally high levels of MET and its metabolites in plasma have been found to be toxic and can lead to cell alterations. Long-term exposure to MET has been shown to mimic psychotic symptoms in schizophrenic patients and rodents. The present study evaluated behavioral and neurochemical effects of long-term exposure to MET in zebrafish. Five groups of zebrafish were exposed to MET at a concentration of 4.5 mM for 7 days, along with acute exposure to 25 μM of clozapine and 750, 1000, and 1250 μM of metoclopramide. In contrast, the normal group was exposed to only water and dimethyl sulfoxide. After the treatment, social interaction, anxiety, memory, and locomotion of zebrafish and serotonin levels in zebrafish brains were evaluated. Our results showed that metoclopramide was not only beneficial in improving MET-induced cognitive impairment but it also prevented social withdrawal in zebrafish exposed to MET. In addition, metoclopramide reversed anxiety-like behavior, as indicated by significant changes in locomotion activity. Despite slight changes in serotonin levels in the zebrafish brain, an <i>in vitro</i> serotonin assay failed to demonstrate significant differences between the disease control, normal, and two treatment groups. Finally, results from the study showed that repeated administration of MET induced schizophrenia-like symptoms, although metoclopramide ameliorated the MET-mediated negative symptoms and cognitive deficits in zebrafish. Overall, our findings suggest a new perspective to further explore the antipsychotic properties of metoclopramide.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1089/zeb.2022.0033\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/zeb.2022.0033","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Metoclopramide as a Potential Antipsychotic Against Long-Term Methionine Exposure in Zebrafish.
Methionine (MET) contributes to brain function and is required for proper functioning of the central nervous system. However, exceptionally high levels of MET and its metabolites in plasma have been found to be toxic and can lead to cell alterations. Long-term exposure to MET has been shown to mimic psychotic symptoms in schizophrenic patients and rodents. The present study evaluated behavioral and neurochemical effects of long-term exposure to MET in zebrafish. Five groups of zebrafish were exposed to MET at a concentration of 4.5 mM for 7 days, along with acute exposure to 25 μM of clozapine and 750, 1000, and 1250 μM of metoclopramide. In contrast, the normal group was exposed to only water and dimethyl sulfoxide. After the treatment, social interaction, anxiety, memory, and locomotion of zebrafish and serotonin levels in zebrafish brains were evaluated. Our results showed that metoclopramide was not only beneficial in improving MET-induced cognitive impairment but it also prevented social withdrawal in zebrafish exposed to MET. In addition, metoclopramide reversed anxiety-like behavior, as indicated by significant changes in locomotion activity. Despite slight changes in serotonin levels in the zebrafish brain, an in vitro serotonin assay failed to demonstrate significant differences between the disease control, normal, and two treatment groups. Finally, results from the study showed that repeated administration of MET induced schizophrenia-like symptoms, although metoclopramide ameliorated the MET-mediated negative symptoms and cognitive deficits in zebrafish. Overall, our findings suggest a new perspective to further explore the antipsychotic properties of metoclopramide.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.