{"title":"缺氧诱导外泌体circ_0051799调控肺腺癌进展的机制","authors":"Shunping Zhu, Bihong Liao","doi":"10.1515/hsz-2023-0108","DOIUrl":null,"url":null,"abstract":"<p><p>This study attempted to investigate the effect of circ_0051799 on the immune microenvironment of lung adenocarcinoma (LUAD) and the relationship between circ_0051799 and exosomes. The number and morphology of exosomes were verified by nanoparticle tracking, transmission electron microscopy and western blotting. CCK8, EdU, Transwell and flow cytometry were used to verify the regulatory role of exosomes and circ_0051799 on tumor progression. Dual luciferase reporting and RNA immunoprecipitation were used to verify the targeted regulatory relationship between circ_0051799, miR-214-3p and IGF2BP3. WB was used to verify the role of the JAK/STAT pathway in circ_0051799 regulation. Ectopic tumor grafts and <i>in situ</i> models were used to validate <i>in vivo</i> their role in regulating LUAD progression. Hypoxic environment could alter but does not alter its shape. Exosomes can participate in the regulation of macrophage polarization by circ_0051799. <i>In vitro</i> and <i>in vivo</i> assays had shown that circ_0051799 could affect the proliferation and metastasis of LUAD through targeting miR-214-3p mediated IGF2BP3 regulated JAK/STAT pathway. This study found that hypoxia can affect LUAD process by promoting the regulation of macrophage polarization by exosome circ_0051799.</p>","PeriodicalId":8885,"journal":{"name":"Biological Chemistry","volume":" ","pages":"143-160"},"PeriodicalIF":2.9000,"publicationDate":"2023-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanism of hypoxia-induced exosome circ_0051799 regulating the progression of lung adenocarcinoma.\",\"authors\":\"Shunping Zhu, Bihong Liao\",\"doi\":\"10.1515/hsz-2023-0108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study attempted to investigate the effect of circ_0051799 on the immune microenvironment of lung adenocarcinoma (LUAD) and the relationship between circ_0051799 and exosomes. The number and morphology of exosomes were verified by nanoparticle tracking, transmission electron microscopy and western blotting. CCK8, EdU, Transwell and flow cytometry were used to verify the regulatory role of exosomes and circ_0051799 on tumor progression. Dual luciferase reporting and RNA immunoprecipitation were used to verify the targeted regulatory relationship between circ_0051799, miR-214-3p and IGF2BP3. WB was used to verify the role of the JAK/STAT pathway in circ_0051799 regulation. Ectopic tumor grafts and <i>in situ</i> models were used to validate <i>in vivo</i> their role in regulating LUAD progression. Hypoxic environment could alter but does not alter its shape. Exosomes can participate in the regulation of macrophage polarization by circ_0051799. <i>In vitro</i> and <i>in vivo</i> assays had shown that circ_0051799 could affect the proliferation and metastasis of LUAD through targeting miR-214-3p mediated IGF2BP3 regulated JAK/STAT pathway. This study found that hypoxia can affect LUAD process by promoting the regulation of macrophage polarization by exosome circ_0051799.</p>\",\"PeriodicalId\":8885,\"journal\":{\"name\":\"Biological Chemistry\",\"volume\":\" \",\"pages\":\"143-160\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biological Chemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1515/hsz-2023-0108\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/2/26 0:00:00\",\"PubModel\":\"Print\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Chemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1515/hsz-2023-0108","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/26 0:00:00","PubModel":"Print","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Mechanism of hypoxia-induced exosome circ_0051799 regulating the progression of lung adenocarcinoma.
This study attempted to investigate the effect of circ_0051799 on the immune microenvironment of lung adenocarcinoma (LUAD) and the relationship between circ_0051799 and exosomes. The number and morphology of exosomes were verified by nanoparticle tracking, transmission electron microscopy and western blotting. CCK8, EdU, Transwell and flow cytometry were used to verify the regulatory role of exosomes and circ_0051799 on tumor progression. Dual luciferase reporting and RNA immunoprecipitation were used to verify the targeted regulatory relationship between circ_0051799, miR-214-3p and IGF2BP3. WB was used to verify the role of the JAK/STAT pathway in circ_0051799 regulation. Ectopic tumor grafts and in situ models were used to validate in vivo their role in regulating LUAD progression. Hypoxic environment could alter but does not alter its shape. Exosomes can participate in the regulation of macrophage polarization by circ_0051799. In vitro and in vivo assays had shown that circ_0051799 could affect the proliferation and metastasis of LUAD through targeting miR-214-3p mediated IGF2BP3 regulated JAK/STAT pathway. This study found that hypoxia can affect LUAD process by promoting the regulation of macrophage polarization by exosome circ_0051799.
期刊介绍:
Biological Chemistry keeps you up-to-date with all new developments in the molecular life sciences. In addition to original research reports, authoritative reviews written by leading researchers in the field keep you informed about the latest advances in the molecular life sciences. Rapid, yet rigorous reviewing ensures fast access to recent research results of exceptional significance in the biological sciences. Papers are published in a "Just Accepted" format within approx.72 hours of acceptance.