排序集抽样中新的子回归类型估计。

IF 0.6 Q4 STATISTICS & PROBABILITY
Eda Gizem Koçyiğit, Khalid Ul Islam Rather
{"title":"排序集抽样中新的子回归类型估计。","authors":"Eda Gizem Koçyiğit,&nbsp;Khalid Ul Islam Rather","doi":"10.1007/s42519-023-00324-9","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, a new sub-regression type estimator for ranked set sampling (RSS) is proposed based on the idea of a sub-ratio estimator given in Koçyiğit and Kadılar (Commun Stat Theory Methods 1-23, 2022). The proposed unbiased estimator's mean square error is obtained and compared theoretically with other estimators. The theoretical results have been supported by the different simulations and real-life data sets studies and have shown that the proposed estimator is more effective than the estimators in the literature. It is also seen that the number of repetitions in the RSS affected the effectiveness of the sub-estimators.</p>","PeriodicalId":45853,"journal":{"name":"Journal of Statistical Theory and Practice","volume":"17 2","pages":"27"},"PeriodicalIF":0.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9974047/pdf/","citationCount":"2","resultStr":"{\"title\":\"The New Sub-regression Type Estimator in Ranked Set Sampling.\",\"authors\":\"Eda Gizem Koçyiğit,&nbsp;Khalid Ul Islam Rather\",\"doi\":\"10.1007/s42519-023-00324-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this study, a new sub-regression type estimator for ranked set sampling (RSS) is proposed based on the idea of a sub-ratio estimator given in Koçyiğit and Kadılar (Commun Stat Theory Methods 1-23, 2022). The proposed unbiased estimator's mean square error is obtained and compared theoretically with other estimators. The theoretical results have been supported by the different simulations and real-life data sets studies and have shown that the proposed estimator is more effective than the estimators in the literature. It is also seen that the number of repetitions in the RSS affected the effectiveness of the sub-estimators.</p>\",\"PeriodicalId\":45853,\"journal\":{\"name\":\"Journal of Statistical Theory and Practice\",\"volume\":\"17 2\",\"pages\":\"27\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9974047/pdf/\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Statistical Theory and Practice\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s42519-023-00324-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Theory and Practice","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s42519-023-00324-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 2

摘要

在本研究中,基于Koçyiğit和Kadılar (common Stat Theory Methods 1- 23,2022)中给出的子比率估计器的思想,提出了一种新的排序集抽样(RSS)的子回归型估计器。得到了无偏估计量的均方误差,并与其他估计量进行了理论比较。理论结果得到了不同模拟和实际数据集研究的支持,并表明所提出的估计器比文献中的估计器更有效。还可以看出,RSS中的重复次数影响了子估计器的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The New Sub-regression Type Estimator in Ranked Set Sampling.

The New Sub-regression Type Estimator in Ranked Set Sampling.

The New Sub-regression Type Estimator in Ranked Set Sampling.

The New Sub-regression Type Estimator in Ranked Set Sampling.

In this study, a new sub-regression type estimator for ranked set sampling (RSS) is proposed based on the idea of a sub-ratio estimator given in Koçyiğit and Kadılar (Commun Stat Theory Methods 1-23, 2022). The proposed unbiased estimator's mean square error is obtained and compared theoretically with other estimators. The theoretical results have been supported by the different simulations and real-life data sets studies and have shown that the proposed estimator is more effective than the estimators in the literature. It is also seen that the number of repetitions in the RSS affected the effectiveness of the sub-estimators.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Statistical Theory and Practice
Journal of Statistical Theory and Practice STATISTICS & PROBABILITY-
CiteScore
1.40
自引率
0.00%
发文量
74
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信