{"title":"八肽重复序列在朊病毒蛋白组装中的多重作用。","authors":"Amy H Guadagno, Scott H Medina","doi":"10.1002/pep2.24303","DOIUrl":null,"url":null,"abstract":"<p><p>Prion protein misfolding is associated with fatal neurodegenerative disorders such as kuru, Creutzfeldt-Jakob disease, and several animal encephalopathies. While the C-terminal 106-126 peptide has been well studied for its role in prion replication and toxicity, the octapeptide repeat (OPR) sequence found within the N-terminal domain has been relatively under explored. Recent findings that the OPR has both local and long-range effects on prion protein folding and assembly, as well as its ability to bind and regulate transition metal homeostasis, highlights the important role this understudied region may have in prion pathologies. This review attempts to collate this knowledge to advance a deeper understanding on the varied physiologic and pathologic roles the prion OPR plays, and connect these findings to potential therapeutic modalities focused on OPR-metal binding. Continued study of the OPR will not only elucidate a more complete mechanistic model of prion pathology, but may enhance knowledge on other neurodegenerative processes underlying Alzheimer's, Parkinson's, and Huntington's diseases.</p>","PeriodicalId":19825,"journal":{"name":"Peptide Science","volume":"115 2","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10162500/pdf/nihms-1871399.pdf","citationCount":"0","resultStr":"{\"title\":\"The manifold role of octapeptide repeats in prion protein assembly.\",\"authors\":\"Amy H Guadagno, Scott H Medina\",\"doi\":\"10.1002/pep2.24303\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Prion protein misfolding is associated with fatal neurodegenerative disorders such as kuru, Creutzfeldt-Jakob disease, and several animal encephalopathies. While the C-terminal 106-126 peptide has been well studied for its role in prion replication and toxicity, the octapeptide repeat (OPR) sequence found within the N-terminal domain has been relatively under explored. Recent findings that the OPR has both local and long-range effects on prion protein folding and assembly, as well as its ability to bind and regulate transition metal homeostasis, highlights the important role this understudied region may have in prion pathologies. This review attempts to collate this knowledge to advance a deeper understanding on the varied physiologic and pathologic roles the prion OPR plays, and connect these findings to potential therapeutic modalities focused on OPR-metal binding. Continued study of the OPR will not only elucidate a more complete mechanistic model of prion pathology, but may enhance knowledge on other neurodegenerative processes underlying Alzheimer's, Parkinson's, and Huntington's diseases.</p>\",\"PeriodicalId\":19825,\"journal\":{\"name\":\"Peptide Science\",\"volume\":\"115 2\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10162500/pdf/nihms-1871399.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Peptide Science\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/pep2.24303\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Peptide Science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/pep2.24303","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/30 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
朊病毒蛋白的错误折叠与致命的神经退行性疾病(如库鲁病、克雅氏病和几种动物脑病)有关。人们对 C 端 106-126 肽在朊病毒复制和毒性中的作用进行了深入研究,但对 N 端结构域中的八肽重复序列(OPR)的研究相对较少。最近的研究发现,OPR 对朊病毒蛋白的折叠和组装具有局部和长程影响,并能结合和调节过渡金属的平衡,这突显了这一未被充分研究的区域在朊病毒病理学中可能发挥的重要作用。本综述试图整理这些知识,以加深对朊病毒 OPR 所扮演的各种生理和病理角色的理解,并将这些发现与侧重于 OPR-金属结合的潜在治疗模式联系起来。对 OPR 的持续研究不仅能阐明朊病毒病理学的更完整的机理模型,还能增进对阿尔茨海默氏症、帕金森氏症和亨廷顿氏症的其他神经退行性过程的了解。
The manifold role of octapeptide repeats in prion protein assembly.
Prion protein misfolding is associated with fatal neurodegenerative disorders such as kuru, Creutzfeldt-Jakob disease, and several animal encephalopathies. While the C-terminal 106-126 peptide has been well studied for its role in prion replication and toxicity, the octapeptide repeat (OPR) sequence found within the N-terminal domain has been relatively under explored. Recent findings that the OPR has both local and long-range effects on prion protein folding and assembly, as well as its ability to bind and regulate transition metal homeostasis, highlights the important role this understudied region may have in prion pathologies. This review attempts to collate this knowledge to advance a deeper understanding on the varied physiologic and pathologic roles the prion OPR plays, and connect these findings to potential therapeutic modalities focused on OPR-metal binding. Continued study of the OPR will not only elucidate a more complete mechanistic model of prion pathology, but may enhance knowledge on other neurodegenerative processes underlying Alzheimer's, Parkinson's, and Huntington's diseases.
Peptide ScienceBiochemistry, Genetics and Molecular Biology-Biophysics
CiteScore
5.20
自引率
4.20%
发文量
36
期刊介绍:
The aim of Peptide Science is to publish significant original research papers and up-to-date reviews covering the entire field of peptide research. Peptide Science provides a forum for papers exploring all aspects of peptide synthesis, materials, structure and bioactivity, including the use of peptides in exploring protein functions and protein-protein interactions. By incorporating both experimental and theoretical studies across the whole spectrum of peptide science, the journal serves the interdisciplinary biochemical, biomaterials, biophysical and biomedical research communities.
Peptide Science is the official journal of the American Peptide Society.