{"title":"免疫肿瘤学的当前趋势。","authors":"Tulsi Dipakbhai Patel, Venkata Gangadhar Vanteddu, Sweta Bawari","doi":"10.2174/1871525720666220829142225","DOIUrl":null,"url":null,"abstract":"<p><p>Surgery, radiation, chemotherapy, and targeted therapy were the four basic kinds of cancer treatment until recently. Immuno-oncology (IO), or the concept that cancer cells were damaged by activating the body's immune system, has emerged and is explained as a unique and crucial method for treating different cancers over the last decade. The US Food and Drug Administration and the European Medicines Agency both approved this newly recognized way of treating cancer in 2020. Within IO, different therapeutic classes have arisen, which are the subject of this article. Immune checkpoint inhibitors are currently the most well-known therapeutic class of immuno-oncology medications due to their amazing ability to show efficacy in a variety of tumor types. Biomarkers were tested for different tumors like gastrointestinal cancer, whole Head, lower and upper part Neck cancer, and also cervical cancer by programmed death-ligand 1 (PD-L1) check point and their targets and are currently being utilized prior to treatment by using Pembrolizumab. However, the significance of PD-L1 expression for immune check point reticence therapy in other/different onco-cancer types remains unclear. Homogenized immuneoncology drugs with regular therapy have been recently studied and clinical efficacy outcomes have shown to be significantly improved. While IO agents are fast transforming the marketed treatment for cancer patients, there are still a number of obstacles to overcome in terms of associating their adverse effects and confirming those different healthcare systems, such as financing these expensive therapies. In addition to cancer vaccines and chimeric antigen receptor T-cell treatments, other IO drugs are in pipeline containing chimeric antigen receptor T-cell therapies; earlier ones have their own set of toxicities and high cost related challenges.</p>","PeriodicalId":9535,"journal":{"name":"Cardiovascular and Hematological Agents in Medicinal Chemistry","volume":"21 2","pages":"96-107"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Current Trends in Immuno-Oncology.\",\"authors\":\"Tulsi Dipakbhai Patel, Venkata Gangadhar Vanteddu, Sweta Bawari\",\"doi\":\"10.2174/1871525720666220829142225\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Surgery, radiation, chemotherapy, and targeted therapy were the four basic kinds of cancer treatment until recently. Immuno-oncology (IO), or the concept that cancer cells were damaged by activating the body's immune system, has emerged and is explained as a unique and crucial method for treating different cancers over the last decade. The US Food and Drug Administration and the European Medicines Agency both approved this newly recognized way of treating cancer in 2020. Within IO, different therapeutic classes have arisen, which are the subject of this article. Immune checkpoint inhibitors are currently the most well-known therapeutic class of immuno-oncology medications due to their amazing ability to show efficacy in a variety of tumor types. Biomarkers were tested for different tumors like gastrointestinal cancer, whole Head, lower and upper part Neck cancer, and also cervical cancer by programmed death-ligand 1 (PD-L1) check point and their targets and are currently being utilized prior to treatment by using Pembrolizumab. However, the significance of PD-L1 expression for immune check point reticence therapy in other/different onco-cancer types remains unclear. Homogenized immuneoncology drugs with regular therapy have been recently studied and clinical efficacy outcomes have shown to be significantly improved. While IO agents are fast transforming the marketed treatment for cancer patients, there are still a number of obstacles to overcome in terms of associating their adverse effects and confirming those different healthcare systems, such as financing these expensive therapies. In addition to cancer vaccines and chimeric antigen receptor T-cell treatments, other IO drugs are in pipeline containing chimeric antigen receptor T-cell therapies; earlier ones have their own set of toxicities and high cost related challenges.</p>\",\"PeriodicalId\":9535,\"journal\":{\"name\":\"Cardiovascular and Hematological Agents in Medicinal Chemistry\",\"volume\":\"21 2\",\"pages\":\"96-107\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cardiovascular and Hematological Agents in Medicinal Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/1871525720666220829142225\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiovascular and Hematological Agents in Medicinal Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1871525720666220829142225","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
Surgery, radiation, chemotherapy, and targeted therapy were the four basic kinds of cancer treatment until recently. Immuno-oncology (IO), or the concept that cancer cells were damaged by activating the body's immune system, has emerged and is explained as a unique and crucial method for treating different cancers over the last decade. The US Food and Drug Administration and the European Medicines Agency both approved this newly recognized way of treating cancer in 2020. Within IO, different therapeutic classes have arisen, which are the subject of this article. Immune checkpoint inhibitors are currently the most well-known therapeutic class of immuno-oncology medications due to their amazing ability to show efficacy in a variety of tumor types. Biomarkers were tested for different tumors like gastrointestinal cancer, whole Head, lower and upper part Neck cancer, and also cervical cancer by programmed death-ligand 1 (PD-L1) check point and their targets and are currently being utilized prior to treatment by using Pembrolizumab. However, the significance of PD-L1 expression for immune check point reticence therapy in other/different onco-cancer types remains unclear. Homogenized immuneoncology drugs with regular therapy have been recently studied and clinical efficacy outcomes have shown to be significantly improved. While IO agents are fast transforming the marketed treatment for cancer patients, there are still a number of obstacles to overcome in terms of associating their adverse effects and confirming those different healthcare systems, such as financing these expensive therapies. In addition to cancer vaccines and chimeric antigen receptor T-cell treatments, other IO drugs are in pipeline containing chimeric antigen receptor T-cell therapies; earlier ones have their own set of toxicities and high cost related challenges.
期刊介绍:
Cardiovascular & Hematological Agents in Medicinal Chemistry aims to cover all the latest and outstanding developments in medicinal chemistry and rational drug design for the discovery of new Cardiovascular & Hematological Agents. Each issue contains a series of timely in-depth reviews written by leaders in the field covering a range of current topics in Cardiovascular & Hematological medicinal chemistry. Cardiovascular & Hematological Agents in Medicinal Chemistry is an essential journal for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important developments in cardiovascular & hematological drug discovery.