Christina S. Saghaug , Astrid L. Gamlem , Kirsti B. Hauge , Juha Vahokoski , Christian Klotz , Toni Aebischer , Nina Langeland , Kurt Hanevik
{"title":"蓝氏贾第鞭毛虫易感和难治性临床样本中甲硝唑代谢基因硝基还原酶和丙酮酸-铁氧还蛋白氧化还原酶的遗传多样性","authors":"Christina S. Saghaug , Astrid L. Gamlem , Kirsti B. Hauge , Juha Vahokoski , Christian Klotz , Toni Aebischer , Nina Langeland , Kurt Hanevik","doi":"10.1016/j.ijpddr.2022.12.003","DOIUrl":null,"url":null,"abstract":"<div><p>The effectiveness of metronidazole against the tetraploid intestinal parasite <em>Giardia lamblia</em> is dependent on its activation/inactivation within the cytoplasm. There are several activating enzymes, including pyruvate ferredoxin reductase (PFOR) and nitroreductase (NR) 1 which metabolize metronidazole into toxic forms, while NR2 on the other hand inactivates it. Metronidazole treatment failures have been increasing rapidly over the last decade, indicating genetic resistance mechanisms. Analyzing genetic variation in the PFOR and NR genes in susceptible and refractory <em>Giardia</em> isolates may help identify potential markers of resistance.</p><p>Full length <em>PFOR1</em>, <em>PFOR2</em>, <em>NR1</em> and <em>NR2</em> genes from clinical culturable isolates and non-cultured clinical <em>Giardia</em> assemblage B samples were cloned, sequenced and single nucleotide variants (SNVs) were analyzed to assess genetic diversity and alleles.</p><p>A similar ratio of amino acid changing SNVs per gene length was found for the NRs; 4.2% for <em>NR1</em> and 6.4% for <em>NR2</em>, while the <em>PFOR1</em> and <em>PFOR2</em> genes had less variability with a ratio of 1.1% and 1.6%, respectively. One of the samples from a refractory case had a nonsense mutation which caused a truncated <em>NR1</em> gene in one out of six alleles. Further, we found three <em>NR2</em> alleles with frameshift mutations, possibly causing a truncated protein in two susceptible isolates. One of these isolates was homozygous for the affected <em>NR2</em> allele. Three nsSNVs with potential for affecting protein function were found in the ferredoxin domain of the <em>PFOR2</em> gene. The considerable variation and discovery of mutations possibly causing dysfunctional NR proteins in clinical <em>Giardia</em> assemblage B isolates, reveal a potential for genetic link to metronidazole susceptibility and resistance.</p></div>","PeriodicalId":13775,"journal":{"name":"International Journal for Parasitology: Drugs and Drug Resistance","volume":"21 ","pages":"Pages 51-60"},"PeriodicalIF":4.1000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9871439/pdf/","citationCount":"2","resultStr":"{\"title\":\"Genetic diversity in the metronidazole metabolism genes nitroreductases and pyruvate ferredoxin oxidoreductases in susceptible and refractory clinical samples of Giardia lamblia\",\"authors\":\"Christina S. Saghaug , Astrid L. Gamlem , Kirsti B. Hauge , Juha Vahokoski , Christian Klotz , Toni Aebischer , Nina Langeland , Kurt Hanevik\",\"doi\":\"10.1016/j.ijpddr.2022.12.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The effectiveness of metronidazole against the tetraploid intestinal parasite <em>Giardia lamblia</em> is dependent on its activation/inactivation within the cytoplasm. There are several activating enzymes, including pyruvate ferredoxin reductase (PFOR) and nitroreductase (NR) 1 which metabolize metronidazole into toxic forms, while NR2 on the other hand inactivates it. Metronidazole treatment failures have been increasing rapidly over the last decade, indicating genetic resistance mechanisms. Analyzing genetic variation in the PFOR and NR genes in susceptible and refractory <em>Giardia</em> isolates may help identify potential markers of resistance.</p><p>Full length <em>PFOR1</em>, <em>PFOR2</em>, <em>NR1</em> and <em>NR2</em> genes from clinical culturable isolates and non-cultured clinical <em>Giardia</em> assemblage B samples were cloned, sequenced and single nucleotide variants (SNVs) were analyzed to assess genetic diversity and alleles.</p><p>A similar ratio of amino acid changing SNVs per gene length was found for the NRs; 4.2% for <em>NR1</em> and 6.4% for <em>NR2</em>, while the <em>PFOR1</em> and <em>PFOR2</em> genes had less variability with a ratio of 1.1% and 1.6%, respectively. One of the samples from a refractory case had a nonsense mutation which caused a truncated <em>NR1</em> gene in one out of six alleles. Further, we found three <em>NR2</em> alleles with frameshift mutations, possibly causing a truncated protein in two susceptible isolates. One of these isolates was homozygous for the affected <em>NR2</em> allele. Three nsSNVs with potential for affecting protein function were found in the ferredoxin domain of the <em>PFOR2</em> gene. The considerable variation and discovery of mutations possibly causing dysfunctional NR proteins in clinical <em>Giardia</em> assemblage B isolates, reveal a potential for genetic link to metronidazole susceptibility and resistance.</p></div>\",\"PeriodicalId\":13775,\"journal\":{\"name\":\"International Journal for Parasitology: Drugs and Drug Resistance\",\"volume\":\"21 \",\"pages\":\"Pages 51-60\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9871439/pdf/\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Parasitology: Drugs and Drug Resistance\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2211320722000367\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PARASITOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Parasitology: Drugs and Drug Resistance","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211320722000367","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PARASITOLOGY","Score":null,"Total":0}
Genetic diversity in the metronidazole metabolism genes nitroreductases and pyruvate ferredoxin oxidoreductases in susceptible and refractory clinical samples of Giardia lamblia
The effectiveness of metronidazole against the tetraploid intestinal parasite Giardia lamblia is dependent on its activation/inactivation within the cytoplasm. There are several activating enzymes, including pyruvate ferredoxin reductase (PFOR) and nitroreductase (NR) 1 which metabolize metronidazole into toxic forms, while NR2 on the other hand inactivates it. Metronidazole treatment failures have been increasing rapidly over the last decade, indicating genetic resistance mechanisms. Analyzing genetic variation in the PFOR and NR genes in susceptible and refractory Giardia isolates may help identify potential markers of resistance.
Full length PFOR1, PFOR2, NR1 and NR2 genes from clinical culturable isolates and non-cultured clinical Giardia assemblage B samples were cloned, sequenced and single nucleotide variants (SNVs) were analyzed to assess genetic diversity and alleles.
A similar ratio of amino acid changing SNVs per gene length was found for the NRs; 4.2% for NR1 and 6.4% for NR2, while the PFOR1 and PFOR2 genes had less variability with a ratio of 1.1% and 1.6%, respectively. One of the samples from a refractory case had a nonsense mutation which caused a truncated NR1 gene in one out of six alleles. Further, we found three NR2 alleles with frameshift mutations, possibly causing a truncated protein in two susceptible isolates. One of these isolates was homozygous for the affected NR2 allele. Three nsSNVs with potential for affecting protein function were found in the ferredoxin domain of the PFOR2 gene. The considerable variation and discovery of mutations possibly causing dysfunctional NR proteins in clinical Giardia assemblage B isolates, reveal a potential for genetic link to metronidazole susceptibility and resistance.
期刊介绍:
The International Journal for Parasitology – Drugs and Drug Resistance is one of a series of specialist, open access journals launched by the International Journal for Parasitology. It publishes the results of original research in the area of anti-parasite drug identification, development and evaluation, and parasite drug resistance. The journal also covers research into natural products as anti-parasitic agents, and bioactive parasite products. Studies can be aimed at unicellular or multicellular parasites of human or veterinary importance.