EM-Gaze:用于凝视估计的眼球上下文相关性和度量学习。

4区 计算机科学 Q1 Arts and Humanities
Jinchao Zhou, Guoan Li, Feng Shi, Xiaoyan Guo, Pengfei Wan, Miao Wang
{"title":"EM-Gaze:用于凝视估计的眼球上下文相关性和度量学习。","authors":"Jinchao Zhou, Guoan Li, Feng Shi, Xiaoyan Guo, Pengfei Wan, Miao Wang","doi":"10.1186/s42492-023-00135-6","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years, deep learning techniques have been used to estimate gaze-a significant task in computer vision and human-computer interaction. Previous studies have made significant achievements in predicting 2D or 3D gazes from monocular face images. This study presents a deep neural network for 2D gaze estimation on mobile devices. It achieves state-of-the-art 2D gaze point regression error, while significantly improving gaze classification error on quadrant divisions of the display. To this end, an efficient attention-based module that correlates and fuses the left and right eye contextual features is first proposed to improve gaze point regression performance. Subsequently, through a unified perspective for gaze estimation, metric learning for gaze classification on quadrant divisions is incorporated as additional supervision. Consequently, both gaze point regression and quadrant classification performances are improved. The experiments demonstrate that the proposed method outperforms existing gaze-estimation methods on the GazeCapture and MPIIFaceGaze datasets.</p>","PeriodicalId":52384,"journal":{"name":"Visual Computing for Industry, Biomedicine, and Art","volume":"6 1","pages":"8"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10163188/pdf/","citationCount":"0","resultStr":"{\"title\":\"EM-Gaze: eye context correlation and metric learning for gaze estimation.\",\"authors\":\"Jinchao Zhou, Guoan Li, Feng Shi, Xiaoyan Guo, Pengfei Wan, Miao Wang\",\"doi\":\"10.1186/s42492-023-00135-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In recent years, deep learning techniques have been used to estimate gaze-a significant task in computer vision and human-computer interaction. Previous studies have made significant achievements in predicting 2D or 3D gazes from monocular face images. This study presents a deep neural network for 2D gaze estimation on mobile devices. It achieves state-of-the-art 2D gaze point regression error, while significantly improving gaze classification error on quadrant divisions of the display. To this end, an efficient attention-based module that correlates and fuses the left and right eye contextual features is first proposed to improve gaze point regression performance. Subsequently, through a unified perspective for gaze estimation, metric learning for gaze classification on quadrant divisions is incorporated as additional supervision. Consequently, both gaze point regression and quadrant classification performances are improved. The experiments demonstrate that the proposed method outperforms existing gaze-estimation methods on the GazeCapture and MPIIFaceGaze datasets.</p>\",\"PeriodicalId\":52384,\"journal\":{\"name\":\"Visual Computing for Industry, Biomedicine, and Art\",\"volume\":\"6 1\",\"pages\":\"8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10163188/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Visual Computing for Industry, Biomedicine, and Art\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.1186/s42492-023-00135-6\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Arts and Humanities\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Visual Computing for Industry, Biomedicine, and Art","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1186/s42492-023-00135-6","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Arts and Humanities","Score":null,"Total":0}
引用次数: 0

摘要

近年来,深度学习技术已被用于估计凝视--这是计算机视觉和人机交互中的一项重要任务。以往的研究在从单目人脸图像预测 2D 或 3D 注视方面取得了重大成就。本研究提出了一种用于移动设备 2D 注视估计的深度神经网络。它实现了最先进的二维注视点回归误差,同时显著改善了显示屏象限划分上的注视分类误差。为此,我们首先提出了一种基于注意力的高效模块,它能关联并融合左右眼的上下文特征,从而提高注视点回归性能。随后,通过统一的注视估计视角,将用于象限划分的注视分类的度量学习作为附加监督纳入其中。因此,注视点回归和象限分类的性能都得到了提高。实验证明,在 GazeCapture 和 MPIIFaceGaze 数据集上,所提出的方法优于现有的注视估计方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

EM-Gaze: eye context correlation and metric learning for gaze estimation.

EM-Gaze: eye context correlation and metric learning for gaze estimation.

EM-Gaze: eye context correlation and metric learning for gaze estimation.

EM-Gaze: eye context correlation and metric learning for gaze estimation.

In recent years, deep learning techniques have been used to estimate gaze-a significant task in computer vision and human-computer interaction. Previous studies have made significant achievements in predicting 2D or 3D gazes from monocular face images. This study presents a deep neural network for 2D gaze estimation on mobile devices. It achieves state-of-the-art 2D gaze point regression error, while significantly improving gaze classification error on quadrant divisions of the display. To this end, an efficient attention-based module that correlates and fuses the left and right eye contextual features is first proposed to improve gaze point regression performance. Subsequently, through a unified perspective for gaze estimation, metric learning for gaze classification on quadrant divisions is incorporated as additional supervision. Consequently, both gaze point regression and quadrant classification performances are improved. The experiments demonstrate that the proposed method outperforms existing gaze-estimation methods on the GazeCapture and MPIIFaceGaze datasets.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Visual Computing for Industry, Biomedicine, and Art
Visual Computing for Industry, Biomedicine, and Art Arts and Humanities-Visual Arts and Performing Arts
CiteScore
5.60
自引率
0.00%
发文量
28
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信