在简单的绘图中插入一条边是困难的。

IF 0.6 3区 数学 Q4 COMPUTER SCIENCE, THEORY & METHODS
Alan Arroyo, Fabian Klute, Irene Parada, Birgit Vogtenhuber, Raimund Seidel, Tilo Wiedera
{"title":"在简单的绘图中插入一条边是困难的。","authors":"Alan Arroyo,&nbsp;Fabian Klute,&nbsp;Irene Parada,&nbsp;Birgit Vogtenhuber,&nbsp;Raimund Seidel,&nbsp;Tilo Wiedera","doi":"10.1007/s00454-022-00394-9","DOIUrl":null,"url":null,"abstract":"<p><p>A <i>simple drawing</i> <i>D</i>(<i>G</i>) of a graph <i>G</i> is one where each pair of edges share at most one point: either a common endpoint or a proper crossing. An edge <i>e</i> in the complement of <i>G</i> can be <i>inserted</i> into <i>D</i>(<i>G</i>) if there exists a simple drawing of <math><mrow><mi>G</mi> <mo>+</mo> <mi>e</mi></mrow> </math> extending <i>D</i>(<i>G</i>). As a result of Levi's Enlargement Lemma, if a drawing is rectilinear (pseudolinear), that is, the edges can be extended into an arrangement of lines (pseudolines), then any edge in the complement of <i>G</i> can be inserted. In contrast, we show that it is NP-complete to decide whether one edge can be inserted into a simple drawing. This remains true even if we assume that the drawing is pseudocircular, that is, the edges can be extended to an arrangement of pseudocircles. On the positive side, we show that, given an arrangement of pseudocircles <math><mi>A</mi></math> and a pseudosegment  <math><mi>σ</mi></math> , it can be decided in polynomial time whether there exists a pseudocircle <math><msub><mi>Φ</mi> <mi>σ</mi></msub> </math> extending <math><mi>σ</mi></math> for which <math><mrow><mi>A</mi> <mo>∪</mo> <mo>{</mo> <msub><mi>Φ</mi> <mi>σ</mi></msub> <mo>}</mo></mrow> </math> is again an arrangement of pseudocircles.</p>","PeriodicalId":50574,"journal":{"name":"Discrete & Computational Geometry","volume":"69 3","pages":"745-770"},"PeriodicalIF":0.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9984358/pdf/","citationCount":"4","resultStr":"{\"title\":\"Inserting One Edge into a Simple Drawing is Hard.\",\"authors\":\"Alan Arroyo,&nbsp;Fabian Klute,&nbsp;Irene Parada,&nbsp;Birgit Vogtenhuber,&nbsp;Raimund Seidel,&nbsp;Tilo Wiedera\",\"doi\":\"10.1007/s00454-022-00394-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A <i>simple drawing</i> <i>D</i>(<i>G</i>) of a graph <i>G</i> is one where each pair of edges share at most one point: either a common endpoint or a proper crossing. An edge <i>e</i> in the complement of <i>G</i> can be <i>inserted</i> into <i>D</i>(<i>G</i>) if there exists a simple drawing of <math><mrow><mi>G</mi> <mo>+</mo> <mi>e</mi></mrow> </math> extending <i>D</i>(<i>G</i>). As a result of Levi's Enlargement Lemma, if a drawing is rectilinear (pseudolinear), that is, the edges can be extended into an arrangement of lines (pseudolines), then any edge in the complement of <i>G</i> can be inserted. In contrast, we show that it is NP-complete to decide whether one edge can be inserted into a simple drawing. This remains true even if we assume that the drawing is pseudocircular, that is, the edges can be extended to an arrangement of pseudocircles. On the positive side, we show that, given an arrangement of pseudocircles <math><mi>A</mi></math> and a pseudosegment  <math><mi>σ</mi></math> , it can be decided in polynomial time whether there exists a pseudocircle <math><msub><mi>Φ</mi> <mi>σ</mi></msub> </math> extending <math><mi>σ</mi></math> for which <math><mrow><mi>A</mi> <mo>∪</mo> <mo>{</mo> <msub><mi>Φ</mi> <mi>σ</mi></msub> <mo>}</mo></mrow> </math> is again an arrangement of pseudocircles.</p>\",\"PeriodicalId\":50574,\"journal\":{\"name\":\"Discrete & Computational Geometry\",\"volume\":\"69 3\",\"pages\":\"745-770\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9984358/pdf/\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete & Computational Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00454-022-00394-9\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete & Computational Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00454-022-00394-9","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 4

摘要

图G的简单图D(G)是每对边最多共用一个点:要么是公共端点,要么是固有交叉点。如果存在G + e扩展D(G)的简单图,则G的补边e可以插入D(G)。根据Levi’s放大引理,如果一幅图是直线的(伪线性),即边可以扩展成一组线(伪线),则在G的补内的任何边都可以插入。相反,我们证明了它是np完全的,以确定一条边是否可以插入到一个简单的绘图。即使我们假设画的是伪圆,也就是说,这些边可以延伸成一组伪圆,这一点仍然成立。在正方面,我们证明了给定一个伪圆A和一个伪段σ的排列,可以在多项式时间内确定是否存在一个伪圆Φ σ扩展σ,对于这个伪圆A∪{Φ σ}又是一个伪圆的排列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Inserting One Edge into a Simple Drawing is Hard.

Inserting One Edge into a Simple Drawing is Hard.

Inserting One Edge into a Simple Drawing is Hard.

Inserting One Edge into a Simple Drawing is Hard.

A simple drawing D(G) of a graph G is one where each pair of edges share at most one point: either a common endpoint or a proper crossing. An edge e in the complement of G can be inserted into D(G) if there exists a simple drawing of G + e extending D(G). As a result of Levi's Enlargement Lemma, if a drawing is rectilinear (pseudolinear), that is, the edges can be extended into an arrangement of lines (pseudolines), then any edge in the complement of G can be inserted. In contrast, we show that it is NP-complete to decide whether one edge can be inserted into a simple drawing. This remains true even if we assume that the drawing is pseudocircular, that is, the edges can be extended to an arrangement of pseudocircles. On the positive side, we show that, given an arrangement of pseudocircles A and a pseudosegment  σ , it can be decided in polynomial time whether there exists a pseudocircle Φ σ extending σ for which A { Φ σ } is again an arrangement of pseudocircles.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete & Computational Geometry
Discrete & Computational Geometry 数学-计算机:理论方法
CiteScore
1.80
自引率
12.50%
发文量
99
审稿时长
6-12 weeks
期刊介绍: Discrete & Computational Geometry (DCG) is an international journal of mathematics and computer science, covering a broad range of topics in which geometry plays a fundamental role. It publishes papers on such topics as configurations and arrangements, spatial subdivision, packing, covering, and tiling, geometric complexity, polytopes, point location, geometric probability, geometric range searching, combinatorial and computational topology, probabilistic techniques in computational geometry, geometric graphs, geometry of numbers, and motion planning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信