非算术双曲共轭轨道的尖密度和可通约性。

IF 0.6 3区 数学 Q4 COMPUTER SCIENCE, THEORY & METHODS
Edoardo Dotti, Simon T Drewitz, Ruth Kellerhals
{"title":"非算术双曲共轭轨道的尖密度和可通约性。","authors":"Edoardo Dotti,&nbsp;Simon T Drewitz,&nbsp;Ruth Kellerhals","doi":"10.1007/s00454-022-00455-z","DOIUrl":null,"url":null,"abstract":"<p><p>For three distinct infinite families <math><mrow><mo>(</mo> <msub><mi>R</mi> <mi>m</mi></msub> <mo>)</mo></mrow> </math> , <math><mrow><mo>(</mo> <msub><mi>S</mi> <mi>m</mi></msub> <mo>)</mo></mrow> </math> , and <math><mrow><mo>(</mo> <msub><mi>T</mi> <mi>m</mi></msub> <mo>)</mo></mrow> </math> of non-arithmetic 1-cusped hyperbolic Coxeter 3-orbifolds, we prove incommensurability for a pair of elements <math><msub><mi>X</mi> <mi>k</mi></msub> </math> and <math><msub><mi>Y</mi> <mi>l</mi></msub> </math> belonging to the same sequence and for most pairs belonging two different ones. We investigate this problem first by means of the Vinberg space and the Vinberg form, a quadratic space associated to each of the corresponding fundamental Coxeter prism groups, which allows us to deduce some partial results. The complete proof is based on the analytic behavior of another commensurability invariant. It is given by the cusp density, and we prove and exploit its strict monotonicity.</p>","PeriodicalId":50574,"journal":{"name":"Discrete & Computational Geometry","volume":"69 3","pages":"873-895"},"PeriodicalIF":0.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9984359/pdf/","citationCount":"0","resultStr":"{\"title\":\"Cusp Density and Commensurability of Non-arithmetic Hyperbolic Coxeter Orbifolds.\",\"authors\":\"Edoardo Dotti,&nbsp;Simon T Drewitz,&nbsp;Ruth Kellerhals\",\"doi\":\"10.1007/s00454-022-00455-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>For three distinct infinite families <math><mrow><mo>(</mo> <msub><mi>R</mi> <mi>m</mi></msub> <mo>)</mo></mrow> </math> , <math><mrow><mo>(</mo> <msub><mi>S</mi> <mi>m</mi></msub> <mo>)</mo></mrow> </math> , and <math><mrow><mo>(</mo> <msub><mi>T</mi> <mi>m</mi></msub> <mo>)</mo></mrow> </math> of non-arithmetic 1-cusped hyperbolic Coxeter 3-orbifolds, we prove incommensurability for a pair of elements <math><msub><mi>X</mi> <mi>k</mi></msub> </math> and <math><msub><mi>Y</mi> <mi>l</mi></msub> </math> belonging to the same sequence and for most pairs belonging two different ones. We investigate this problem first by means of the Vinberg space and the Vinberg form, a quadratic space associated to each of the corresponding fundamental Coxeter prism groups, which allows us to deduce some partial results. The complete proof is based on the analytic behavior of another commensurability invariant. It is given by the cusp density, and we prove and exploit its strict monotonicity.</p>\",\"PeriodicalId\":50574,\"journal\":{\"name\":\"Discrete & Computational Geometry\",\"volume\":\"69 3\",\"pages\":\"873-895\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9984359/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete & Computational Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00454-022-00455-z\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete & Computational Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00454-022-00455-z","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

对于非等差1尖双曲Coxeter 3-轨道的三个不同无限族(R m), (S m)和(T m),我们证明了属于同一序列的一对元素X k和Y l以及属于两个不同序列的大多数元素对的不可通约性。我们首先通过Vinberg空间和Vinberg形式来研究这个问题,Vinberg形式是一个与每个相应的基本Coxeter棱镜群相关的二次空间,它允许我们推断出一些部分结果。完整的证明是基于另一个可通约性不变量的解析行为。它由尖密度给出,并证明和利用了它的严格单调性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Cusp Density and Commensurability of Non-arithmetic Hyperbolic Coxeter Orbifolds.

Cusp Density and Commensurability of Non-arithmetic Hyperbolic Coxeter Orbifolds.

Cusp Density and Commensurability of Non-arithmetic Hyperbolic Coxeter Orbifolds.

Cusp Density and Commensurability of Non-arithmetic Hyperbolic Coxeter Orbifolds.

For three distinct infinite families ( R m ) , ( S m ) , and ( T m ) of non-arithmetic 1-cusped hyperbolic Coxeter 3-orbifolds, we prove incommensurability for a pair of elements X k and Y l belonging to the same sequence and for most pairs belonging two different ones. We investigate this problem first by means of the Vinberg space and the Vinberg form, a quadratic space associated to each of the corresponding fundamental Coxeter prism groups, which allows us to deduce some partial results. The complete proof is based on the analytic behavior of another commensurability invariant. It is given by the cusp density, and we prove and exploit its strict monotonicity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete & Computational Geometry
Discrete & Computational Geometry 数学-计算机:理论方法
CiteScore
1.80
自引率
12.50%
发文量
99
审稿时长
6-12 weeks
期刊介绍: Discrete & Computational Geometry (DCG) is an international journal of mathematics and computer science, covering a broad range of topics in which geometry plays a fundamental role. It publishes papers on such topics as configurations and arrangements, spatial subdivision, packing, covering, and tiling, geometric complexity, polytopes, point location, geometric probability, geometric range searching, combinatorial and computational topology, probabilistic techniques in computational geometry, geometric graphs, geometry of numbers, and motion planning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信