Huajian Li, Shaoping Wang, Hong Wang, Haoran Li, Yanan Li, Pingping Dong, Xianming Lan, Jiayu Zhang, Long Dai
{"title":"环黄芪醇体内、体外代谢物的uhplc - q -精确轨道阱质谱综合研究","authors":"Huajian Li, Shaoping Wang, Hong Wang, Haoran Li, Yanan Li, Pingping Dong, Xianming Lan, Jiayu Zhang, Long Dai","doi":"10.2174/1389200224666230202150436","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Cycloastragenol (CAG) is a sapogenin derived from the main bioactive constituents of Astragali Radix (AR). However, the current research on CAG metabolism in vivo and in vitro is still inadequate, and the metabolite cluster is incomplete due to incomplete analysis strategy.</p><p><strong>Objective: </strong>The objective of this study was to screen and identify the metabolic behavior of CAG in vivo and in vitro.</p><p><strong>Methods: </strong>A simple and rapid analysis strategy based on UHPLC-Q-Exactive Orbitrap mass spectrometry combined with data-mining processing technology was developed and used to screen and identify CAG metabolites in rat body fluids and tissues after oral administration.</p><p><strong>Results: </strong>As a result, a total of 82 metabolites were fully or partially characterized based on their accurate mass, characteristic fragment ions, retention times, corresponding Clog P values, and so on. Among the metabolites, 61 were not been reported in previous reports. These metabolites (6 metabolites in vitro and 91 in vivo) were generated through reactions of hydroxylation, glucuronidation, sulfation, hydrogenation, hydroxylation, demethylation, deisopropylation, dehydroxylation, ring cleavage, and carboxyl substitution and their composite reactions, and the hydroxylation might be the main metabolic reaction of CAG. In addition, the characteristic fragmentation pathways of CAG were summarized for the subsequent metabolite identification.</p><p><strong>Conclusion: </strong>The current study not only clarifies the metabolite cluster-based and metabolic regularity of CAG in vivo and in vitro, but also provides ideas for metabolism of other saponin compounds.</p>","PeriodicalId":10770,"journal":{"name":"Current drug metabolism","volume":"23 14","pages":"1090-1114"},"PeriodicalIF":2.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comprehensive Study of <i>In vivo</i> and <i>In vitro</i> Metabolites of Cycloastragenol Based on UHPLC-Q-Exactive Orbitrap Mass Spectrometer.\",\"authors\":\"Huajian Li, Shaoping Wang, Hong Wang, Haoran Li, Yanan Li, Pingping Dong, Xianming Lan, Jiayu Zhang, Long Dai\",\"doi\":\"10.2174/1389200224666230202150436\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Cycloastragenol (CAG) is a sapogenin derived from the main bioactive constituents of Astragali Radix (AR). However, the current research on CAG metabolism in vivo and in vitro is still inadequate, and the metabolite cluster is incomplete due to incomplete analysis strategy.</p><p><strong>Objective: </strong>The objective of this study was to screen and identify the metabolic behavior of CAG in vivo and in vitro.</p><p><strong>Methods: </strong>A simple and rapid analysis strategy based on UHPLC-Q-Exactive Orbitrap mass spectrometry combined with data-mining processing technology was developed and used to screen and identify CAG metabolites in rat body fluids and tissues after oral administration.</p><p><strong>Results: </strong>As a result, a total of 82 metabolites were fully or partially characterized based on their accurate mass, characteristic fragment ions, retention times, corresponding Clog P values, and so on. Among the metabolites, 61 were not been reported in previous reports. These metabolites (6 metabolites in vitro and 91 in vivo) were generated through reactions of hydroxylation, glucuronidation, sulfation, hydrogenation, hydroxylation, demethylation, deisopropylation, dehydroxylation, ring cleavage, and carboxyl substitution and their composite reactions, and the hydroxylation might be the main metabolic reaction of CAG. In addition, the characteristic fragmentation pathways of CAG were summarized for the subsequent metabolite identification.</p><p><strong>Conclusion: </strong>The current study not only clarifies the metabolite cluster-based and metabolic regularity of CAG in vivo and in vitro, but also provides ideas for metabolism of other saponin compounds.</p>\",\"PeriodicalId\":10770,\"journal\":{\"name\":\"Current drug metabolism\",\"volume\":\"23 14\",\"pages\":\"1090-1114\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current drug metabolism\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/1389200224666230202150436\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current drug metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/1389200224666230202150436","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Comprehensive Study of In vivo and In vitro Metabolites of Cycloastragenol Based on UHPLC-Q-Exactive Orbitrap Mass Spectrometer.
Background: Cycloastragenol (CAG) is a sapogenin derived from the main bioactive constituents of Astragali Radix (AR). However, the current research on CAG metabolism in vivo and in vitro is still inadequate, and the metabolite cluster is incomplete due to incomplete analysis strategy.
Objective: The objective of this study was to screen and identify the metabolic behavior of CAG in vivo and in vitro.
Methods: A simple and rapid analysis strategy based on UHPLC-Q-Exactive Orbitrap mass spectrometry combined with data-mining processing technology was developed and used to screen and identify CAG metabolites in rat body fluids and tissues after oral administration.
Results: As a result, a total of 82 metabolites were fully or partially characterized based on their accurate mass, characteristic fragment ions, retention times, corresponding Clog P values, and so on. Among the metabolites, 61 were not been reported in previous reports. These metabolites (6 metabolites in vitro and 91 in vivo) were generated through reactions of hydroxylation, glucuronidation, sulfation, hydrogenation, hydroxylation, demethylation, deisopropylation, dehydroxylation, ring cleavage, and carboxyl substitution and their composite reactions, and the hydroxylation might be the main metabolic reaction of CAG. In addition, the characteristic fragmentation pathways of CAG were summarized for the subsequent metabolite identification.
Conclusion: The current study not only clarifies the metabolite cluster-based and metabolic regularity of CAG in vivo and in vitro, but also provides ideas for metabolism of other saponin compounds.
期刊介绍:
Current Drug Metabolism aims to cover all the latest and outstanding developments in drug metabolism, pharmacokinetics, and drug disposition. The journal serves as an international forum for the publication of full-length/mini review, research articles and guest edited issues in drug metabolism. Current Drug Metabolism is an essential journal for academic, clinical, government and pharmaceutical scientists who wish to be kept informed and up-to-date with the most important developments. The journal covers the following general topic areas: pharmaceutics, pharmacokinetics, toxicology, and most importantly drug metabolism.
More specifically, in vitro and in vivo drug metabolism of phase I and phase II enzymes or metabolic pathways; drug-drug interactions and enzyme kinetics; pharmacokinetics, pharmacokinetic-pharmacodynamic modeling, and toxicokinetics; interspecies differences in metabolism or pharmacokinetics, species scaling and extrapolations; drug transporters; target organ toxicity and interindividual variability in drug exposure-response; extrahepatic metabolism; bioactivation, reactive metabolites, and developments for the identification of drug metabolites. Preclinical and clinical reviews describing the drug metabolism and pharmacokinetics of marketed drugs or drug classes.