{"title":"分数索波列夫空间和分数变化的分布方法:渐近学 I.","authors":"Giovanni E Comi, Giorgio Stefani","doi":"10.1007/s13163-022-00429-y","DOIUrl":null,"url":null,"abstract":"<p><p>We continue the study of the space <math><mrow><mi>B</mi> <msup><mi>V</mi> <mi>α</mi></msup> <mrow><mo>(</mo> <msup><mrow><mi>R</mi></mrow> <mi>n</mi></msup> <mo>)</mo></mrow> </mrow> </math> of functions with bounded fractional variation in <math> <msup><mrow><mi>R</mi></mrow> <mi>n</mi></msup> </math> of order <math><mrow><mi>α</mi> <mo>∈</mo> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>)</mo></mrow> </math> introduced in our previous work (Comi and Stefani in J Funct Anal 277(10):3373-3435, 2019). After some technical improvements of certain results of Comi and Stefani (2019) which may be of some separated insterest, we deal with the asymptotic behavior of the fractional operators involved as <math><mrow><mi>α</mi> <mo>→</mo> <msup><mn>1</mn> <mo>-</mo></msup> </mrow> </math> . We prove that the <math><mi>α</mi></math> -gradient of a <math><msup><mi>W</mi> <mrow><mn>1</mn> <mo>,</mo> <mi>p</mi></mrow> </msup> </math> -function converges in <math><msup><mi>L</mi> <mi>p</mi></msup> </math> to the gradient for all <math><mrow><mi>p</mi> <mo>∈</mo> <mo>[</mo> <mn>1</mn> <mo>,</mo> <mo>+</mo> <mi>∞</mi> <mo>)</mo></mrow> </math> as <math><mrow><mi>α</mi> <mo>→</mo> <msup><mn>1</mn> <mo>-</mo></msup> </mrow> </math> . Moreover, we prove that the fractional <math><mi>α</mi></math> -variation converges to the standard De Giorgi's variation both pointwise and in the <math><mi>Γ</mi></math> -limit sense as <math><mrow><mi>α</mi> <mo>→</mo> <msup><mn>1</mn> <mo>-</mo></msup> </mrow> </math> . Finally, we prove that the fractional <math><mi>β</mi></math> -variation converges to the fractional <math><mi>α</mi></math> -variation both pointwise and in the <math><mi>Γ</mi></math> -limit sense as <math><mrow><mi>β</mi> <mo>→</mo> <msup><mi>α</mi> <mo>-</mo></msup> </mrow> </math> for any given <math><mrow><mi>α</mi> <mo>∈</mo> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>)</mo></mrow> </math> .</p>","PeriodicalId":49605,"journal":{"name":"Revista Matematica Complutense","volume":"36 2","pages":"491-569"},"PeriodicalIF":1.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10147820/pdf/","citationCount":"0","resultStr":"{\"title\":\"A distributional approach to fractional Sobolev spaces and fractional variation: asymptotics I.\",\"authors\":\"Giovanni E Comi, Giorgio Stefani\",\"doi\":\"10.1007/s13163-022-00429-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We continue the study of the space <math><mrow><mi>B</mi> <msup><mi>V</mi> <mi>α</mi></msup> <mrow><mo>(</mo> <msup><mrow><mi>R</mi></mrow> <mi>n</mi></msup> <mo>)</mo></mrow> </mrow> </math> of functions with bounded fractional variation in <math> <msup><mrow><mi>R</mi></mrow> <mi>n</mi></msup> </math> of order <math><mrow><mi>α</mi> <mo>∈</mo> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>)</mo></mrow> </math> introduced in our previous work (Comi and Stefani in J Funct Anal 277(10):3373-3435, 2019). After some technical improvements of certain results of Comi and Stefani (2019) which may be of some separated insterest, we deal with the asymptotic behavior of the fractional operators involved as <math><mrow><mi>α</mi> <mo>→</mo> <msup><mn>1</mn> <mo>-</mo></msup> </mrow> </math> . We prove that the <math><mi>α</mi></math> -gradient of a <math><msup><mi>W</mi> <mrow><mn>1</mn> <mo>,</mo> <mi>p</mi></mrow> </msup> </math> -function converges in <math><msup><mi>L</mi> <mi>p</mi></msup> </math> to the gradient for all <math><mrow><mi>p</mi> <mo>∈</mo> <mo>[</mo> <mn>1</mn> <mo>,</mo> <mo>+</mo> <mi>∞</mi> <mo>)</mo></mrow> </math> as <math><mrow><mi>α</mi> <mo>→</mo> <msup><mn>1</mn> <mo>-</mo></msup> </mrow> </math> . Moreover, we prove that the fractional <math><mi>α</mi></math> -variation converges to the standard De Giorgi's variation both pointwise and in the <math><mi>Γ</mi></math> -limit sense as <math><mrow><mi>α</mi> <mo>→</mo> <msup><mn>1</mn> <mo>-</mo></msup> </mrow> </math> . Finally, we prove that the fractional <math><mi>β</mi></math> -variation converges to the fractional <math><mi>α</mi></math> -variation both pointwise and in the <math><mi>Γ</mi></math> -limit sense as <math><mrow><mi>β</mi> <mo>→</mo> <msup><mi>α</mi> <mo>-</mo></msup> </mrow> </math> for any given <math><mrow><mi>α</mi> <mo>∈</mo> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>)</mo></mrow> </math> .</p>\",\"PeriodicalId\":49605,\"journal\":{\"name\":\"Revista Matematica Complutense\",\"volume\":\"36 2\",\"pages\":\"491-569\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10147820/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Matematica Complutense\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s13163-022-00429-y\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/6/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Matematica Complutense","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13163-022-00429-y","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/6/20 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
我们继续研究我们之前的工作 (Comi and Stefani in J Funct Anal 277(10):3373-3435, 2019) 中引入的 R n 中阶 α∈ ( 0 , 1 ) 的有界分数变化函数空间 B V α ( R n ) 。在对 Comi 和 Stefani (2019) 的某些结果做了一些技术上的改进之后(这些结果可能会引起一些单独的兴趣),我们讨论了所涉及的分数算子在 α → 1 - 时的渐近行为。我们证明,当 α → 1 - 时,W 1 , p 函数的 α 梯度在 L p 中收敛于所有 p∈ [ 1 , + ∞ ) 的梯度。此外,我们证明当 α → 1 - 时,分数 α 变量在点上和Γ - 极限意义上都收敛于标准的 De Giorgi 变量。最后,我们证明,对于任何给定的 α∈ ( 0 , 1 ) ,分式 β 变量在 β → α - 时都会在点上和 Γ - 极限意义上收敛于分式 α 变量。
A distributional approach to fractional Sobolev spaces and fractional variation: asymptotics I.
We continue the study of the space of functions with bounded fractional variation in of order introduced in our previous work (Comi and Stefani in J Funct Anal 277(10):3373-3435, 2019). After some technical improvements of certain results of Comi and Stefani (2019) which may be of some separated insterest, we deal with the asymptotic behavior of the fractional operators involved as . We prove that the -gradient of a -function converges in to the gradient for all as . Moreover, we prove that the fractional -variation converges to the standard De Giorgi's variation both pointwise and in the -limit sense as . Finally, we prove that the fractional -variation converges to the fractional -variation both pointwise and in the -limit sense as for any given .
期刊介绍:
Revista Matemática Complutense is an international research journal supported by the School of Mathematics at Complutense University in Madrid. It publishes high quality research and survey articles across pure and applied mathematics. Fields of interests include: analysis, differential equations and applications, geometry, topology, algebra, statistics, computer sciences and astronomy. This broad interest is reflected in our interdisciplinary editorial board which is comprised of over 30 internationally esteemed researchers in diverse areas.
The Editorial Board of Revista Matemática Complutense organizes the “Santaló Lecture”, a yearly event where a distinguished mathematician is invited to present a lecture at Complutense University and contribute to the journal. Past lecturers include: Charles T.C. Wall, Jack K. Hale, Hans Triebel, Marcelo Viana, Narayanswamy Balakrishnan, Nigel Kalton, Alfio Quarteroni, David E. Edmunds, Giuseppe Buttazzo, Juan L. Vázquez, Eduard Feireisl, Nigel Hitchin, Lajos Horváth, Hélène Esnault, Luigi Ambrosio, Ignacio Cirac and Bernd Sturmfels. The Santaló Lecturer for 2019 will be Noel Cressie from National Institute for Applied Statistics Research Australia (NIASRA), University of Wollongong.