{"title":"传递函数方法理解信号转导网络的周期性强迫。","authors":"Nguyen H N Tran, Andrew H A Clayton","doi":"10.1088/1478-3975/acc300","DOIUrl":null,"url":null,"abstract":"<p><p>Signal transduction networks are responsible for transferring biochemical signals from the extracellular to the intracellular environment. Understanding the dynamics of these networks helps understand their biological processes. Signals are often delivered in pulses and oscillations. Therefore, understanding the dynamics of these networks under pulsatile and periodic stimuli is useful. One tool to do this is the transfer function. This tutorial outlines the basic theory behind the transfer function approach and walks through some examples of simple signal transduction networks.</p>","PeriodicalId":20207,"journal":{"name":"Physical biology","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2023-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transfer function approach to understanding periodic forcing of signal transduction networks.\",\"authors\":\"Nguyen H N Tran, Andrew H A Clayton\",\"doi\":\"10.1088/1478-3975/acc300\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Signal transduction networks are responsible for transferring biochemical signals from the extracellular to the intracellular environment. Understanding the dynamics of these networks helps understand their biological processes. Signals are often delivered in pulses and oscillations. Therefore, understanding the dynamics of these networks under pulsatile and periodic stimuli is useful. One tool to do this is the transfer function. This tutorial outlines the basic theory behind the transfer function approach and walks through some examples of simple signal transduction networks.</p>\",\"PeriodicalId\":20207,\"journal\":{\"name\":\"Physical biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1088/1478-3975/acc300\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1088/1478-3975/acc300","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Transfer function approach to understanding periodic forcing of signal transduction networks.
Signal transduction networks are responsible for transferring biochemical signals from the extracellular to the intracellular environment. Understanding the dynamics of these networks helps understand their biological processes. Signals are often delivered in pulses and oscillations. Therefore, understanding the dynamics of these networks under pulsatile and periodic stimuli is useful. One tool to do this is the transfer function. This tutorial outlines the basic theory behind the transfer function approach and walks through some examples of simple signal transduction networks.
期刊介绍:
Physical Biology publishes articles in the broad interdisciplinary field bridging biology with the physical sciences and engineering. This journal focuses on research in which quantitative approaches – experimental, theoretical and modeling – lead to new insights into biological systems at all scales of space and time, and all levels of organizational complexity.
Physical Biology accepts contributions from a wide range of biological sub-fields, including topics such as:
molecular biophysics, including single molecule studies, protein-protein and protein-DNA interactions
subcellular structures, organelle dynamics, membranes, protein assemblies, chromosome structure
intracellular processes, e.g. cytoskeleton dynamics, cellular transport, cell division
systems biology, e.g. signaling, gene regulation and metabolic networks
cells and their microenvironment, e.g. cell mechanics and motility, chemotaxis, extracellular matrix, biofilms
cell-material interactions, e.g. biointerfaces, electrical stimulation and sensing, endocytosis
cell-cell interactions, cell aggregates, organoids, tissues and organs
developmental dynamics, including pattern formation and morphogenesis
physical and evolutionary aspects of disease, e.g. cancer progression, amyloid formation
neuronal systems, including information processing by networks, memory and learning
population dynamics, ecology, and evolution
collective action and emergence of collective phenomena.