Ana Sofia Pádua, Lígia Figueiredo, Jorge Carvalho Silva, João Paulo Borges
{"title":"介孔羟基磷灰石和介孔生物活性玻璃壳聚糖支架。","authors":"Ana Sofia Pádua, Lígia Figueiredo, Jorge Carvalho Silva, João Paulo Borges","doi":"10.1007/s40204-023-00217-x","DOIUrl":null,"url":null,"abstract":"<p><p>Bone regeneration is one of the most well-known fields in tissue regeneration. The major focus concerns polymeric/ceramic composite scaffolds. In this work, several composite scaffolds based on chitosan (CH), with low and high molecular weights, and different concentrations of ceramics like mesoporous bioactive glass (MBG), mesoporous hydroxyapatite (MHAp) and both MBG and MHAp (MC) were produced by lyophilization. The purpose is to identify the best combination regarding optimal morphology and properties. The tests of the scaffolds present a highly porous structure with interconnected pores. The compression modulus increases with ceramic concentration in the scaffolds. Furthermore, the 75%MBG (835 ± 160 kPa) and 50%MC (1070 ± 205 kPa) samples are the ones that mostly enhance increases in mechanical properties. The swelling capacity increases with MBG and MC, respectively, to 700% and 900% and decreases to 400% when MHAp concentration increases. All scaffolds are non-cytotoxic at 12.5 mg/mL. The CHL scaffolds improve cell adhesion and proliferation compared to CHH, and the MC scaffold samples, show better results than those produced with just MBG or MHAp. The composite scaffolds of chitosan with MBG and MHAp, have revealed to be the best combination due to their enhanced performance in bone tissue engineering.</p>","PeriodicalId":20691,"journal":{"name":"Progress in Biomaterials","volume":"12 2","pages":"137-153"},"PeriodicalIF":4.4000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10154456/pdf/","citationCount":"2","resultStr":"{\"title\":\"Chitosan scaffolds with mesoporous hydroxyapatite and mesoporous bioactive glass.\",\"authors\":\"Ana Sofia Pádua, Lígia Figueiredo, Jorge Carvalho Silva, João Paulo Borges\",\"doi\":\"10.1007/s40204-023-00217-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bone regeneration is one of the most well-known fields in tissue regeneration. The major focus concerns polymeric/ceramic composite scaffolds. In this work, several composite scaffolds based on chitosan (CH), with low and high molecular weights, and different concentrations of ceramics like mesoporous bioactive glass (MBG), mesoporous hydroxyapatite (MHAp) and both MBG and MHAp (MC) were produced by lyophilization. The purpose is to identify the best combination regarding optimal morphology and properties. The tests of the scaffolds present a highly porous structure with interconnected pores. The compression modulus increases with ceramic concentration in the scaffolds. Furthermore, the 75%MBG (835 ± 160 kPa) and 50%MC (1070 ± 205 kPa) samples are the ones that mostly enhance increases in mechanical properties. The swelling capacity increases with MBG and MC, respectively, to 700% and 900% and decreases to 400% when MHAp concentration increases. All scaffolds are non-cytotoxic at 12.5 mg/mL. The CHL scaffolds improve cell adhesion and proliferation compared to CHH, and the MC scaffold samples, show better results than those produced with just MBG or MHAp. The composite scaffolds of chitosan with MBG and MHAp, have revealed to be the best combination due to their enhanced performance in bone tissue engineering.</p>\",\"PeriodicalId\":20691,\"journal\":{\"name\":\"Progress in Biomaterials\",\"volume\":\"12 2\",\"pages\":\"137-153\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10154456/pdf/\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Biomaterials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s40204-023-00217-x\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40204-023-00217-x","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Chitosan scaffolds with mesoporous hydroxyapatite and mesoporous bioactive glass.
Bone regeneration is one of the most well-known fields in tissue regeneration. The major focus concerns polymeric/ceramic composite scaffolds. In this work, several composite scaffolds based on chitosan (CH), with low and high molecular weights, and different concentrations of ceramics like mesoporous bioactive glass (MBG), mesoporous hydroxyapatite (MHAp) and both MBG and MHAp (MC) were produced by lyophilization. The purpose is to identify the best combination regarding optimal morphology and properties. The tests of the scaffolds present a highly porous structure with interconnected pores. The compression modulus increases with ceramic concentration in the scaffolds. Furthermore, the 75%MBG (835 ± 160 kPa) and 50%MC (1070 ± 205 kPa) samples are the ones that mostly enhance increases in mechanical properties. The swelling capacity increases with MBG and MC, respectively, to 700% and 900% and decreases to 400% when MHAp concentration increases. All scaffolds are non-cytotoxic at 12.5 mg/mL. The CHL scaffolds improve cell adhesion and proliferation compared to CHH, and the MC scaffold samples, show better results than those produced with just MBG or MHAp. The composite scaffolds of chitosan with MBG and MHAp, have revealed to be the best combination due to their enhanced performance in bone tissue engineering.
期刊介绍:
Progress in Biomaterials is a multidisciplinary, English-language publication of original contributions and reviews concerning studies of the preparation, performance and evaluation of biomaterials; the chemical, physical, biological and mechanical behavior of materials both in vitro and in vivo in areas such as tissue engineering and regenerative medicine, drug delivery and implants where biomaterials play a significant role. Including all areas of: design; preparation; performance and evaluation of nano- and biomaterials in tissue engineering; drug delivery systems; regenerative medicine; implantable medical devices; interaction of cells/stem cells on biomaterials and related applications.