Siting Yang, Ke Xu, Shouliang Guan, Liang Zou, Lei Gao, Jinfen Wang, Huihui Tian, Hui Li, Ying Fang, Hongbian Li
{"title":"用于神经活动记录的聚合物纳米纤维网络增强金电极阵列。","authors":"Siting Yang, Ke Xu, Shouliang Guan, Liang Zou, Lei Gao, Jinfen Wang, Huihui Tian, Hui Li, Ying Fang, Hongbian Li","doi":"10.1007/s13534-022-00257-5","DOIUrl":null,"url":null,"abstract":"<p><p>Flexible and stretchable neural electrodes are promising tools for high-fidelity interfacing with soft and curvilinear brain surface. Here, we describe a flexible and stretchable neural electrode array that consists of polyacrylonitrile (PAN) nanofiber network reinforced gold (Au) film electrodes. Under stretching, the interweaving PAN nanofibers effectively terminate the formation of propagating cracks in the Au films and thus enable the formation of a dynamically stable electrode-tissue interface. Moreover, the PAN nanofibers increase the surface roughness and active surface areas of the Au electrodes, leading to reduced electrochemical impedance and improved signal-to-noise ratio. As a result, PAN nanofiber network reinforced Au electrode arrays can allow for reliable in vivo multichannel recording of epileptiform activities in rats.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s13534-022-00257-5.</p>","PeriodicalId":46898,"journal":{"name":"Biomedical Engineering Letters","volume":"13 2","pages":"111-118"},"PeriodicalIF":3.2000,"publicationDate":"2023-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10130319/pdf/","citationCount":"0","resultStr":"{\"title\":\"Polymer nanofiber network reinforced gold electrode array for neural activity recording.\",\"authors\":\"Siting Yang, Ke Xu, Shouliang Guan, Liang Zou, Lei Gao, Jinfen Wang, Huihui Tian, Hui Li, Ying Fang, Hongbian Li\",\"doi\":\"10.1007/s13534-022-00257-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Flexible and stretchable neural electrodes are promising tools for high-fidelity interfacing with soft and curvilinear brain surface. Here, we describe a flexible and stretchable neural electrode array that consists of polyacrylonitrile (PAN) nanofiber network reinforced gold (Au) film electrodes. Under stretching, the interweaving PAN nanofibers effectively terminate the formation of propagating cracks in the Au films and thus enable the formation of a dynamically stable electrode-tissue interface. Moreover, the PAN nanofibers increase the surface roughness and active surface areas of the Au electrodes, leading to reduced electrochemical impedance and improved signal-to-noise ratio. As a result, PAN nanofiber network reinforced Au electrode arrays can allow for reliable in vivo multichannel recording of epileptiform activities in rats.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s13534-022-00257-5.</p>\",\"PeriodicalId\":46898,\"journal\":{\"name\":\"Biomedical Engineering Letters\",\"volume\":\"13 2\",\"pages\":\"111-118\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10130319/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Engineering Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s13534-022-00257-5\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/5/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Engineering Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13534-022-00257-5","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/5/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
摘要
柔性可拉伸神经电极是与柔软弯曲的大脑表面进行高保真连接的理想工具。在这里,我们描述了一种柔性可拉伸神经电极阵列,它由聚丙烯腈(PAN)纳米纤维网络增强金(Au)薄膜电极组成。在拉伸过程中,交织的 PAN 纳米纤维能有效阻止金膜裂缝的形成,从而形成动态稳定的电极-组织界面。此外,PAN 纳米纤维增加了金电极的表面粗糙度和活性表面积,从而降低了电化学阻抗,提高了信噪比。因此,PAN 纳米纤维网络增强型金电极阵列可以可靠地在大鼠体内多通道记录癫痫样活动:在线版本包含补充材料,可查阅 10.1007/s13534-022-00257-5。
Flexible and stretchable neural electrodes are promising tools for high-fidelity interfacing with soft and curvilinear brain surface. Here, we describe a flexible and stretchable neural electrode array that consists of polyacrylonitrile (PAN) nanofiber network reinforced gold (Au) film electrodes. Under stretching, the interweaving PAN nanofibers effectively terminate the formation of propagating cracks in the Au films and thus enable the formation of a dynamically stable electrode-tissue interface. Moreover, the PAN nanofibers increase the surface roughness and active surface areas of the Au electrodes, leading to reduced electrochemical impedance and improved signal-to-noise ratio. As a result, PAN nanofiber network reinforced Au electrode arrays can allow for reliable in vivo multichannel recording of epileptiform activities in rats.
Supplementary information: The online version contains supplementary material available at 10.1007/s13534-022-00257-5.
期刊介绍:
Biomedical Engineering Letters (BMEL) aims to present the innovative experimental science and technological development in the biomedical field as well as clinical application of new development. The article must contain original biomedical engineering content, defined as development, theoretical analysis, and evaluation/validation of a new technique. BMEL publishes the following types of papers: original articles, review articles, editorials, and letters to the editor. All the papers are reviewed in single-blind fashion.