韩国首例携带新型阳离子转运介质4 (CNNM4)错义突变的贾利利综合征患儿:1例报告。

Q3 Medicine
Ji Hye Lee, Ji Sook Yim, Myung Shin Kim, Sin-Young Kim, Shin Hae Park
{"title":"韩国首例携带新型阳离子转运介质4 (CNNM4)错义突变的贾利利综合征患儿:1例报告。","authors":"Ji Hye Lee, Ji Sook Yim, Myung Shin Kim, Sin-Young Kim, Shin Hae Park","doi":"10.3341/kjo.2022.0144","DOIUrl":null,"url":null,"abstract":"Dear Editor, Jalili syndrome is an extremely rare autosomal recessive disorder with two major ocular and dental features: conerod dystrophy and amelogenesis imperfecta [1]. Patients often have poor visual acuity, photophobia, nystagmus, and absent color vision. Since the first case report in 1988, the metal cation transport mediator 4 (CNNM4) gene residing at chromosome locus 2q11.2 is discovered to be a causative gene of Jalili syndrome in 2009 [2,3]. We report the first Korean case of Jalili syndrome carrying compound heterozygous causative variants with a novel missense variant in CNNM4. A 7-year-old boy visited Seoul St. Mary’s Hospital with uncorrected vision. He was the first baby of nonconsanguineous parents and was born at 38 weeks gestation with a birth weight of 3.35 kg. There was no previous family history of ocular, systemic, or chromosomal disorders. He had a mild hyperopic refractive error of +1.5 diopters. He had been wearing glasses for several years, but his best-corrected visual acuity was 20 / 200 in both eyes. Photophobia and slow pendular nystagmus were also observed. Fundus examination revealed a normal-looking optic disc and macula (Fig. 1A, 1B). Whereas widefield fundus photography and fundus autofluorescence did not reveal any definite abnormalities, the blurring of ellipsoid zone was noted on optical coherence tomography (Fig. 1C–1F). A full-field electroretinogram (RETI-scan, Roland Consult) showed severely reduced responses in the cone and rod systems in both eyes (Fig. 1G). After obtaining written informed consent from his parents, next-generation sequencing (NGS) was performed for the genetic analysis. Targeted panel sequencing was done with 439 genes, which were reported as being related to inherited retinal dystrophy. Subsequently, compound heterozygous missense variants of c.1511T>G, p.(Ile504Ser), and c.344T>C, p.(Leu115Pro) in the CNNM4 (reference sequence, NM_020184.4) were identified. The c.1511T>G, p.(Ile504Ser), is in the cystathionine-β-synthase domain which is evolutionarily conserved and known to play essential roles in the regulation of the activities of numerous proteins (PMID: 31347285, 16275737, 14722619). Population frequencies were extremely low (0.0000544 in East Asian populations and 0.00000398 in all ethnicities, according to gnomAD exome), and the variant was predicted to have a deleterious effect by multiple line in silico tools, including MutationTaster [4], PolyPhen-2 [5], and SIFT [6]. Based on these facts, we classified the mutation as likely pathogenic according to the American College of Medical Genetics and Genomics guidelines. A c.344T>C variant has never been reported in a population database. It causes a p.(Leu115Pro) amino acid change, and this position is conserved (phyloP100way, 6.03); multiple in silico tools such as FATHMM-MKL [7], MutationTaster [4], and PolyPhen-2 [5] predicted a deleterious effect by affecting the protein synthetic process. A parental testing, which was performed only for the patient’s mother due to their circumstances, revealed only one heterozygous variant (c.1511T>G) from the mother. Although we could not confirm the other variant from the patient’s father, it is highly suspected that our patient’s variants would be present in trans. On the subsequent dental evaluation, the patient had brown discolorations in his permanent maxillary central incisors and enamel hypoplasia in his permanent first molars. A panoramic radiograph showed pulp obliteration of the remaining primary teeth. Enamel hypoplasia, which is a variant of amelogenesis imperfecta was diagnosed (Fig. 1H). Our case has two major features of Jalili syndrome: cone-rod dystrophy and amelogenesis imperfecta. The mutation in CNNM4 gene was identified by targeted NGS technology. Exact mechanism of CNNM4 mutation has on retina still needs to be uncovered but it seems that as CNNM4 gene encodes an ACDP4 protein which works as a mineral transporter; CNNM4 mutation results in ACDP4 under exKorean J Ophthalmol 2023;37(2):195-197 https://doi.org/10.3341/kjo.2022.0144","PeriodicalId":17883,"journal":{"name":"Korean Journal of Ophthalmology : KJO","volume":"37 2","pages":"195-197"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/54/68/kjo-2022-0144.PMC10151169.pdf","citationCount":"0","resultStr":"{\"title\":\"The First Korean Child of Jalili Syndrome with a Novel Missense Mutation in Cation Transport Mediator 4 (CNNM4): A Case Report.\",\"authors\":\"Ji Hye Lee, Ji Sook Yim, Myung Shin Kim, Sin-Young Kim, Shin Hae Park\",\"doi\":\"10.3341/kjo.2022.0144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dear Editor, Jalili syndrome is an extremely rare autosomal recessive disorder with two major ocular and dental features: conerod dystrophy and amelogenesis imperfecta [1]. Patients often have poor visual acuity, photophobia, nystagmus, and absent color vision. Since the first case report in 1988, the metal cation transport mediator 4 (CNNM4) gene residing at chromosome locus 2q11.2 is discovered to be a causative gene of Jalili syndrome in 2009 [2,3]. We report the first Korean case of Jalili syndrome carrying compound heterozygous causative variants with a novel missense variant in CNNM4. A 7-year-old boy visited Seoul St. Mary’s Hospital with uncorrected vision. He was the first baby of nonconsanguineous parents and was born at 38 weeks gestation with a birth weight of 3.35 kg. There was no previous family history of ocular, systemic, or chromosomal disorders. He had a mild hyperopic refractive error of +1.5 diopters. He had been wearing glasses for several years, but his best-corrected visual acuity was 20 / 200 in both eyes. Photophobia and slow pendular nystagmus were also observed. Fundus examination revealed a normal-looking optic disc and macula (Fig. 1A, 1B). Whereas widefield fundus photography and fundus autofluorescence did not reveal any definite abnormalities, the blurring of ellipsoid zone was noted on optical coherence tomography (Fig. 1C–1F). A full-field electroretinogram (RETI-scan, Roland Consult) showed severely reduced responses in the cone and rod systems in both eyes (Fig. 1G). After obtaining written informed consent from his parents, next-generation sequencing (NGS) was performed for the genetic analysis. Targeted panel sequencing was done with 439 genes, which were reported as being related to inherited retinal dystrophy. Subsequently, compound heterozygous missense variants of c.1511T>G, p.(Ile504Ser), and c.344T>C, p.(Leu115Pro) in the CNNM4 (reference sequence, NM_020184.4) were identified. The c.1511T>G, p.(Ile504Ser), is in the cystathionine-β-synthase domain which is evolutionarily conserved and known to play essential roles in the regulation of the activities of numerous proteins (PMID: 31347285, 16275737, 14722619). Population frequencies were extremely low (0.0000544 in East Asian populations and 0.00000398 in all ethnicities, according to gnomAD exome), and the variant was predicted to have a deleterious effect by multiple line in silico tools, including MutationTaster [4], PolyPhen-2 [5], and SIFT [6]. Based on these facts, we classified the mutation as likely pathogenic according to the American College of Medical Genetics and Genomics guidelines. A c.344T>C variant has never been reported in a population database. It causes a p.(Leu115Pro) amino acid change, and this position is conserved (phyloP100way, 6.03); multiple in silico tools such as FATHMM-MKL [7], MutationTaster [4], and PolyPhen-2 [5] predicted a deleterious effect by affecting the protein synthetic process. A parental testing, which was performed only for the patient’s mother due to their circumstances, revealed only one heterozygous variant (c.1511T>G) from the mother. Although we could not confirm the other variant from the patient’s father, it is highly suspected that our patient’s variants would be present in trans. On the subsequent dental evaluation, the patient had brown discolorations in his permanent maxillary central incisors and enamel hypoplasia in his permanent first molars. A panoramic radiograph showed pulp obliteration of the remaining primary teeth. Enamel hypoplasia, which is a variant of amelogenesis imperfecta was diagnosed (Fig. 1H). Our case has two major features of Jalili syndrome: cone-rod dystrophy and amelogenesis imperfecta. The mutation in CNNM4 gene was identified by targeted NGS technology. Exact mechanism of CNNM4 mutation has on retina still needs to be uncovered but it seems that as CNNM4 gene encodes an ACDP4 protein which works as a mineral transporter; CNNM4 mutation results in ACDP4 under exKorean J Ophthalmol 2023;37(2):195-197 https://doi.org/10.3341/kjo.2022.0144\",\"PeriodicalId\":17883,\"journal\":{\"name\":\"Korean Journal of Ophthalmology : KJO\",\"volume\":\"37 2\",\"pages\":\"195-197\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/54/68/kjo-2022-0144.PMC10151169.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Korean Journal of Ophthalmology : KJO\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3341/kjo.2022.0144\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Korean Journal of Ophthalmology : KJO","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3341/kjo.2022.0144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。

The First Korean Child of Jalili Syndrome with a Novel Missense Mutation in Cation Transport Mediator 4 (CNNM4): A Case Report.

The First Korean Child of Jalili Syndrome with a Novel Missense Mutation in Cation Transport Mediator 4 (CNNM4): A Case Report.
Dear Editor, Jalili syndrome is an extremely rare autosomal recessive disorder with two major ocular and dental features: conerod dystrophy and amelogenesis imperfecta [1]. Patients often have poor visual acuity, photophobia, nystagmus, and absent color vision. Since the first case report in 1988, the metal cation transport mediator 4 (CNNM4) gene residing at chromosome locus 2q11.2 is discovered to be a causative gene of Jalili syndrome in 2009 [2,3]. We report the first Korean case of Jalili syndrome carrying compound heterozygous causative variants with a novel missense variant in CNNM4. A 7-year-old boy visited Seoul St. Mary’s Hospital with uncorrected vision. He was the first baby of nonconsanguineous parents and was born at 38 weeks gestation with a birth weight of 3.35 kg. There was no previous family history of ocular, systemic, or chromosomal disorders. He had a mild hyperopic refractive error of +1.5 diopters. He had been wearing glasses for several years, but his best-corrected visual acuity was 20 / 200 in both eyes. Photophobia and slow pendular nystagmus were also observed. Fundus examination revealed a normal-looking optic disc and macula (Fig. 1A, 1B). Whereas widefield fundus photography and fundus autofluorescence did not reveal any definite abnormalities, the blurring of ellipsoid zone was noted on optical coherence tomography (Fig. 1C–1F). A full-field electroretinogram (RETI-scan, Roland Consult) showed severely reduced responses in the cone and rod systems in both eyes (Fig. 1G). After obtaining written informed consent from his parents, next-generation sequencing (NGS) was performed for the genetic analysis. Targeted panel sequencing was done with 439 genes, which were reported as being related to inherited retinal dystrophy. Subsequently, compound heterozygous missense variants of c.1511T>G, p.(Ile504Ser), and c.344T>C, p.(Leu115Pro) in the CNNM4 (reference sequence, NM_020184.4) were identified. The c.1511T>G, p.(Ile504Ser), is in the cystathionine-β-synthase domain which is evolutionarily conserved and known to play essential roles in the regulation of the activities of numerous proteins (PMID: 31347285, 16275737, 14722619). Population frequencies were extremely low (0.0000544 in East Asian populations and 0.00000398 in all ethnicities, according to gnomAD exome), and the variant was predicted to have a deleterious effect by multiple line in silico tools, including MutationTaster [4], PolyPhen-2 [5], and SIFT [6]. Based on these facts, we classified the mutation as likely pathogenic according to the American College of Medical Genetics and Genomics guidelines. A c.344T>C variant has never been reported in a population database. It causes a p.(Leu115Pro) amino acid change, and this position is conserved (phyloP100way, 6.03); multiple in silico tools such as FATHMM-MKL [7], MutationTaster [4], and PolyPhen-2 [5] predicted a deleterious effect by affecting the protein synthetic process. A parental testing, which was performed only for the patient’s mother due to their circumstances, revealed only one heterozygous variant (c.1511T>G) from the mother. Although we could not confirm the other variant from the patient’s father, it is highly suspected that our patient’s variants would be present in trans. On the subsequent dental evaluation, the patient had brown discolorations in his permanent maxillary central incisors and enamel hypoplasia in his permanent first molars. A panoramic radiograph showed pulp obliteration of the remaining primary teeth. Enamel hypoplasia, which is a variant of amelogenesis imperfecta was diagnosed (Fig. 1H). Our case has two major features of Jalili syndrome: cone-rod dystrophy and amelogenesis imperfecta. The mutation in CNNM4 gene was identified by targeted NGS technology. Exact mechanism of CNNM4 mutation has on retina still needs to be uncovered but it seems that as CNNM4 gene encodes an ACDP4 protein which works as a mineral transporter; CNNM4 mutation results in ACDP4 under exKorean J Ophthalmol 2023;37(2):195-197 https://doi.org/10.3341/kjo.2022.0144
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Korean Journal of Ophthalmology : KJO
Korean Journal of Ophthalmology : KJO Medicine-Ophthalmology
CiteScore
2.40
自引率
0.00%
发文量
84
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信