卡诺群上的多重配合物及其相关谱序列。

IF 1.2 2区 数学 Q1 MATHEMATICS
Antonio Lerario, Francesca Tripaldi
{"title":"卡诺群上的多重配合物及其相关谱序列。","authors":"Antonio Lerario,&nbsp;Francesca Tripaldi","doi":"10.1007/s12220-023-01259-0","DOIUrl":null,"url":null,"abstract":"<p><p>The aim of this paper is to give a thorough insight into the relationship between the Rumin complex on Carnot groups and the spectral sequence obtained from the filtration on forms by homogeneous weights that computes the de Rham cohomology of the underlying group.</p>","PeriodicalId":56121,"journal":{"name":"Journal of Geometric Analysis","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10119276/pdf/","citationCount":"3","resultStr":"{\"title\":\"Multicomplexes on Carnot Groups and Their Associated Spectral Sequence.\",\"authors\":\"Antonio Lerario,&nbsp;Francesca Tripaldi\",\"doi\":\"10.1007/s12220-023-01259-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The aim of this paper is to give a thorough insight into the relationship between the Rumin complex on Carnot groups and the spectral sequence obtained from the filtration on forms by homogeneous weights that computes the de Rham cohomology of the underlying group.</p>\",\"PeriodicalId\":56121,\"journal\":{\"name\":\"Journal of Geometric Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10119276/pdf/\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geometric Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s12220-023-01259-0\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometric Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s12220-023-01259-0","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

本文的目的是深入了解卡诺群上的Rumin复形和谱序列之间的关系,这些谱序列是通过计算底层群的de Rham上同调的齐次加权过滤得到的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multicomplexes on Carnot Groups and Their Associated Spectral Sequence.

The aim of this paper is to give a thorough insight into the relationship between the Rumin complex on Carnot groups and the spectral sequence obtained from the filtration on forms by homogeneous weights that computes the de Rham cohomology of the underlying group.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
9.10%
发文量
290
审稿时长
3 months
期刊介绍: JGA publishes both research and high-level expository papers in geometric analysis and its applications. There are no restrictions on page length.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信