{"title":"顺式调控元件6q25.1特征的生物信息学评价","authors":"N Sreekar, Smeeta Shrestha","doi":"10.1177/11779322231167971","DOIUrl":null,"url":null,"abstract":"<p><p>Eukaryotic non-coding regulatory features contribute significantly to cellular plasticity which on aberration leads to cellular malignancy. Enhancers are cis-regulatory elements that contribute to the development of resistance to endocrine therapy in estrogen receptor (ER)-positive breast cancer leading to poor clinical outcome. ER is vital for therapeutic targets in ER-positive breast cancer. Here, we review and report the different regulatory features present on ER with the objective to delineate potential mechanisms which may contribute to development of resistance. The UCSC Genome Browser, data mining, and bioinformatics tools were used to review enhancers, transcription factors (TFs), histone marks, long non-coding RNAs (lncRNAs), and variants residing in the non-coding region of the ER gene. We report 7 enhancers, 3 of which were rich in TF-binding sites and histone marks in a cell line-specific manner. Furthermore, some enhancers contain estrogen resistance variants and sites for lncRNA. Our review speculates putative models suggesting potential aberrations in gene regulation and expression if these regulatory landscapes and assemblies are altered. This review gives an interesting perspective in designing integrated in vitro studies including non-coding elements to study development of endocrine resistance in ER-positive breast cancer.</p>","PeriodicalId":9065,"journal":{"name":"Bioinformatics and Biology Insights","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/c9/42/10.1177_11779322231167971.PMC10134125.pdf","citationCount":"0","resultStr":"{\"title\":\"Bioinformatic Evaluation of Features on Cis-regulatory Elements at 6q25.1.\",\"authors\":\"N Sreekar, Smeeta Shrestha\",\"doi\":\"10.1177/11779322231167971\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Eukaryotic non-coding regulatory features contribute significantly to cellular plasticity which on aberration leads to cellular malignancy. Enhancers are cis-regulatory elements that contribute to the development of resistance to endocrine therapy in estrogen receptor (ER)-positive breast cancer leading to poor clinical outcome. ER is vital for therapeutic targets in ER-positive breast cancer. Here, we review and report the different regulatory features present on ER with the objective to delineate potential mechanisms which may contribute to development of resistance. The UCSC Genome Browser, data mining, and bioinformatics tools were used to review enhancers, transcription factors (TFs), histone marks, long non-coding RNAs (lncRNAs), and variants residing in the non-coding region of the ER gene. We report 7 enhancers, 3 of which were rich in TF-binding sites and histone marks in a cell line-specific manner. Furthermore, some enhancers contain estrogen resistance variants and sites for lncRNA. Our review speculates putative models suggesting potential aberrations in gene regulation and expression if these regulatory landscapes and assemblies are altered. This review gives an interesting perspective in designing integrated in vitro studies including non-coding elements to study development of endocrine resistance in ER-positive breast cancer.</p>\",\"PeriodicalId\":9065,\"journal\":{\"name\":\"Bioinformatics and Biology Insights\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/c9/42/10.1177_11779322231167971.PMC10134125.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinformatics and Biology Insights\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/11779322231167971\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics and Biology Insights","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/11779322231167971","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Bioinformatic Evaluation of Features on Cis-regulatory Elements at 6q25.1.
Eukaryotic non-coding regulatory features contribute significantly to cellular plasticity which on aberration leads to cellular malignancy. Enhancers are cis-regulatory elements that contribute to the development of resistance to endocrine therapy in estrogen receptor (ER)-positive breast cancer leading to poor clinical outcome. ER is vital for therapeutic targets in ER-positive breast cancer. Here, we review and report the different regulatory features present on ER with the objective to delineate potential mechanisms which may contribute to development of resistance. The UCSC Genome Browser, data mining, and bioinformatics tools were used to review enhancers, transcription factors (TFs), histone marks, long non-coding RNAs (lncRNAs), and variants residing in the non-coding region of the ER gene. We report 7 enhancers, 3 of which were rich in TF-binding sites and histone marks in a cell line-specific manner. Furthermore, some enhancers contain estrogen resistance variants and sites for lncRNA. Our review speculates putative models suggesting potential aberrations in gene regulation and expression if these regulatory landscapes and assemblies are altered. This review gives an interesting perspective in designing integrated in vitro studies including non-coding elements to study development of endocrine resistance in ER-positive breast cancer.
期刊介绍:
Bioinformatics and Biology Insights is an open access, peer-reviewed journal that considers articles on bioinformatics methods and their applications which must pertain to biological insights. All papers should be easily amenable to biologists and as such help bridge the gap between theories and applications.