{"title":"数字生物学的前景与挑战。","authors":"Mark E Minie, Ram Samudrala","doi":"10.4172/2155-9538.1000e118","DOIUrl":null,"url":null,"abstract":"The era of Digital Biology began in 2010 with the “rebooting” of a bacterial cell using a synthetic DNA genome created from a digital template stored on a computer [1]. With this event, the creation of Mycoplasma laboratorium (nicknamed “Synthea”), came the first complete proof that DNA was the true software of life. Cells could be simulated digitally and the simulations could be tested against reality by reprograming cytoplasm with synthetic genomes generated from the digital DNA sequences driving those simulations. This in turn has created the expectation and promise that a deeper understanding of cellular function and thus life itself could be achieved on an infinite iterative loop of computer modeling and chemical synthesis (Figure 1) [2].","PeriodicalId":73616,"journal":{"name":"Journal of bioengineering & biomedical science","volume":"3 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6191183/pdf/","citationCount":"2","resultStr":"{\"title\":\"The Promise and Challenge of Digital Biology.\",\"authors\":\"Mark E Minie, Ram Samudrala\",\"doi\":\"10.4172/2155-9538.1000e118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The era of Digital Biology began in 2010 with the “rebooting” of a bacterial cell using a synthetic DNA genome created from a digital template stored on a computer [1]. With this event, the creation of Mycoplasma laboratorium (nicknamed “Synthea”), came the first complete proof that DNA was the true software of life. Cells could be simulated digitally and the simulations could be tested against reality by reprograming cytoplasm with synthetic genomes generated from the digital DNA sequences driving those simulations. This in turn has created the expectation and promise that a deeper understanding of cellular function and thus life itself could be achieved on an infinite iterative loop of computer modeling and chemical synthesis (Figure 1) [2].\",\"PeriodicalId\":73616,\"journal\":{\"name\":\"Journal of bioengineering & biomedical science\",\"volume\":\"3 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6191183/pdf/\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of bioengineering & biomedical science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4172/2155-9538.1000e118\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of bioengineering & biomedical science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2155-9538.1000e118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The era of Digital Biology began in 2010 with the “rebooting” of a bacterial cell using a synthetic DNA genome created from a digital template stored on a computer [1]. With this event, the creation of Mycoplasma laboratorium (nicknamed “Synthea”), came the first complete proof that DNA was the true software of life. Cells could be simulated digitally and the simulations could be tested against reality by reprograming cytoplasm with synthetic genomes generated from the digital DNA sequences driving those simulations. This in turn has created the expectation and promise that a deeper understanding of cellular function and thus life itself could be achieved on an infinite iterative loop of computer modeling and chemical synthesis (Figure 1) [2].