氮对增材制造马氏体不锈钢的影响:常规热处理及与变形的比较。

IF 2.2 3区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Eric A Lass, Fan Zhang, Carelyn E Campbell
{"title":"氮对增材制造马氏体不锈钢的影响:常规热处理及与变形的比较。","authors":"Eric A Lass,&nbsp;Fan Zhang,&nbsp;Carelyn E Campbell","doi":"10.1007/s11661-020-05703-6","DOIUrl":null,"url":null,"abstract":"<p><p>The microstructures of additively manufactured (AM) precipitation-hardenable stainless steels 17-4 and 15-5 were investigated and compared to those of conventionally produced materials. The residual N found in N<sub>2</sub>-atomized 17-4 powder feedstock is inherited by the additively produced material, and has dramatic effects on phase stability, microstructure, and microstructural evolution. Nitrogen is a known austenite stabilizing element, and the as-built microstructure of AM 17-4 can contain up to 90 pct or more retained austenite, compared to the nearly 100 pct martensite structure of wrought 17-4. Even after homogenization and solutionization heat treatments, AM 17-4 contains 5 to 20 pct retained austenite. In contrast, AM 15-5 and Ar-atomized AM 17-4 contain<5 pct retained austenite in the as-built condition, and this level is further decreased following post-build thermal processing. Computational thermodynamics-based calculations qualitatively describe the observed depression in the martensite start temperature and martensite stability as a function of N-content, but require further refinements to become quantitative. A significant increase in the volume fraction of fine-scale carbide precipitates attributed to the high N-content of AM 17-4 is also hypothesized to give rise to additional activation barriers for the dislocation motion required for martensite nucleation and subsequent growth. An increase in the volume fraction of carbide/nitride precipitates is observed in AM 15-5, although they do not inhibit martensite formation to the extent observed in AM 17-4.</p>","PeriodicalId":49827,"journal":{"name":"Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science","volume":"51 5","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s11661-020-05703-6","citationCount":"21","resultStr":"{\"title\":\"Nitrogen Effects in Additively Manufactured Martensitic Stainless Steels: Conventional Thermal Processing and Comparison with Wrought.\",\"authors\":\"Eric A Lass,&nbsp;Fan Zhang,&nbsp;Carelyn E Campbell\",\"doi\":\"10.1007/s11661-020-05703-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The microstructures of additively manufactured (AM) precipitation-hardenable stainless steels 17-4 and 15-5 were investigated and compared to those of conventionally produced materials. The residual N found in N<sub>2</sub>-atomized 17-4 powder feedstock is inherited by the additively produced material, and has dramatic effects on phase stability, microstructure, and microstructural evolution. Nitrogen is a known austenite stabilizing element, and the as-built microstructure of AM 17-4 can contain up to 90 pct or more retained austenite, compared to the nearly 100 pct martensite structure of wrought 17-4. Even after homogenization and solutionization heat treatments, AM 17-4 contains 5 to 20 pct retained austenite. In contrast, AM 15-5 and Ar-atomized AM 17-4 contain<5 pct retained austenite in the as-built condition, and this level is further decreased following post-build thermal processing. Computational thermodynamics-based calculations qualitatively describe the observed depression in the martensite start temperature and martensite stability as a function of N-content, but require further refinements to become quantitative. A significant increase in the volume fraction of fine-scale carbide precipitates attributed to the high N-content of AM 17-4 is also hypothesized to give rise to additional activation barriers for the dislocation motion required for martensite nucleation and subsequent growth. An increase in the volume fraction of carbide/nitride precipitates is observed in AM 15-5, although they do not inhibit martensite formation to the extent observed in AM 17-4.</p>\",\"PeriodicalId\":49827,\"journal\":{\"name\":\"Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science\",\"volume\":\"51 5\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s11661-020-05703-6\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s11661-020-05703-6\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s11661-020-05703-6","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 21

摘要

研究了增材制造(AM)析出硬化不锈钢17-4和15-5的显微组织,并与常规生产的材料进行了比较。在n2雾化的17-4粉末原料中发现的残余N被增材生产的材料所继承,并对相稳定性、微观结构和微观组织演变产生显著影响。氮是一种已知的奥氏体稳定元素,AM 17-4的构建组织可以包含高达90%或更多的残余奥氏体,而变形后的17-4的马氏体结构几乎为100%。即使经过均质化和固溶热处理,AM 17-4仍含有5%至20%的残余奥氏体。相比之下,AM 15-5和ar雾化AM 17-4含有
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nitrogen Effects in Additively Manufactured Martensitic Stainless Steels: Conventional Thermal Processing and Comparison with Wrought.

The microstructures of additively manufactured (AM) precipitation-hardenable stainless steels 17-4 and 15-5 were investigated and compared to those of conventionally produced materials. The residual N found in N2-atomized 17-4 powder feedstock is inherited by the additively produced material, and has dramatic effects on phase stability, microstructure, and microstructural evolution. Nitrogen is a known austenite stabilizing element, and the as-built microstructure of AM 17-4 can contain up to 90 pct or more retained austenite, compared to the nearly 100 pct martensite structure of wrought 17-4. Even after homogenization and solutionization heat treatments, AM 17-4 contains 5 to 20 pct retained austenite. In contrast, AM 15-5 and Ar-atomized AM 17-4 contain<5 pct retained austenite in the as-built condition, and this level is further decreased following post-build thermal processing. Computational thermodynamics-based calculations qualitatively describe the observed depression in the martensite start temperature and martensite stability as a function of N-content, but require further refinements to become quantitative. A significant increase in the volume fraction of fine-scale carbide precipitates attributed to the high N-content of AM 17-4 is also hypothesized to give rise to additional activation barriers for the dislocation motion required for martensite nucleation and subsequent growth. An increase in the volume fraction of carbide/nitride precipitates is observed in AM 15-5, although they do not inhibit martensite formation to the extent observed in AM 17-4.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.30
自引率
7.10%
发文量
322
审稿时长
6 months
期刊介绍: Metallurgical and Materials Transactions A focuses on the latest research in all aspects of physical metallurgy and materials science. It explores relationships among processing, structure, and properties of materials; publishes critically reviewed, original research of archival significance. The journal address the main topics of alloy phases; transformations; transport phenomena; mechanical behavior; physical chemistry; environment; welding & joining; surface treatment; electronic, magnetic & optical material; solidification; materials processing; composite materials; biomaterials; and light metals. MMTA publishes Technical Publications, Communications, Symposia, and more. Published with ASM International, The Materials Information Society and The Minerals, Metals & Materials Society (TMS)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信