Mohammad Samad, Sreekar Malempati, Carolina B A Restini
{"title":"利钠肽作为生物标志物:心血管和呼吸功能障碍的叙述回顾和考虑。","authors":"Mohammad Samad, Sreekar Malempati, Carolina B A Restini","doi":"10.59249/NCST6937","DOIUrl":null,"url":null,"abstract":"<p><p>Natriuretic peptides (NPs) encompass a family of structurally related hormone/paracrine factors acting through the natriuretic peptide system regulating cell proliferation, vessel tone, inflammatory processes, neurohumoral pathways, fluids, and electrolyte balance. The three most studied peptides are atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), and C-Type natriuretic peptide (CNP). ANP and BNP are the most relevant NPs as biomarkers for the diagnosis and prognosis of heart failure and underlying cardiovascular diseases, such as cardiac valvular dysfunction, hypertension, coronary artery disease, myocardial infarction, persistent arrhythmias, and cardiomyopathies. Cardiac dysfunctions related to cardiomyocytes stretching in the atria and ventricles are primary elicitors of ANP and BNP release, respectively. ANP and BNP would serve as biomarkers for differentiating cardiac versus noncardiac causes of dyspnea and as a tool for measuring the prognosis of patients with heart failure; nevertheless, BNP has been shown with the highest predictive value, particularly related to pulmonary disorders. Plasma BNP has been reported to help differentiate cardiac from pulmonary etiologies of dyspnea in adults and neonates. Studies have shown that COVID-19 infection also increases serum levels of N-terminal pro b-type natriuretic peptide (NT-proBNP) and BNP. This narrative review assesses aspects of ANP and BNP on their physiology, and predictive values as biomarkers. We present an overview of the NPs' synthesis, structure, storage, and release, as well as receptors and physiological roles. Following, considerations focus on ANP versus BNP, comparing their relevance in settings and diseases associated with respiratory dysfunctions. Finally, we compiled data from guidelines for using BNP as a biomarker in dyspneic patients with cardiac dysfunction, including its considerations in COVID-19.</p>","PeriodicalId":48617,"journal":{"name":"Yale Journal of Biology and Medicine","volume":"96 1","pages":"137-149"},"PeriodicalIF":2.5000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/5e/25/yjbm_96_1_137.PMC10052602.pdf","citationCount":"3","resultStr":"{\"title\":\"Natriuretic Peptides as Biomarkers: Narrative Review and Considerations in Cardiovascular and Respiratory Dysfunctions.\",\"authors\":\"Mohammad Samad, Sreekar Malempati, Carolina B A Restini\",\"doi\":\"10.59249/NCST6937\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Natriuretic peptides (NPs) encompass a family of structurally related hormone/paracrine factors acting through the natriuretic peptide system regulating cell proliferation, vessel tone, inflammatory processes, neurohumoral pathways, fluids, and electrolyte balance. The three most studied peptides are atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), and C-Type natriuretic peptide (CNP). ANP and BNP are the most relevant NPs as biomarkers for the diagnosis and prognosis of heart failure and underlying cardiovascular diseases, such as cardiac valvular dysfunction, hypertension, coronary artery disease, myocardial infarction, persistent arrhythmias, and cardiomyopathies. Cardiac dysfunctions related to cardiomyocytes stretching in the atria and ventricles are primary elicitors of ANP and BNP release, respectively. ANP and BNP would serve as biomarkers for differentiating cardiac versus noncardiac causes of dyspnea and as a tool for measuring the prognosis of patients with heart failure; nevertheless, BNP has been shown with the highest predictive value, particularly related to pulmonary disorders. Plasma BNP has been reported to help differentiate cardiac from pulmonary etiologies of dyspnea in adults and neonates. Studies have shown that COVID-19 infection also increases serum levels of N-terminal pro b-type natriuretic peptide (NT-proBNP) and BNP. This narrative review assesses aspects of ANP and BNP on their physiology, and predictive values as biomarkers. We present an overview of the NPs' synthesis, structure, storage, and release, as well as receptors and physiological roles. Following, considerations focus on ANP versus BNP, comparing their relevance in settings and diseases associated with respiratory dysfunctions. Finally, we compiled data from guidelines for using BNP as a biomarker in dyspneic patients with cardiac dysfunction, including its considerations in COVID-19.</p>\",\"PeriodicalId\":48617,\"journal\":{\"name\":\"Yale Journal of Biology and Medicine\",\"volume\":\"96 1\",\"pages\":\"137-149\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/5e/25/yjbm_96_1_137.PMC10052602.pdf\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Yale Journal of Biology and Medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.59249/NCST6937\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Yale Journal of Biology and Medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.59249/NCST6937","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
Natriuretic Peptides as Biomarkers: Narrative Review and Considerations in Cardiovascular and Respiratory Dysfunctions.
Natriuretic peptides (NPs) encompass a family of structurally related hormone/paracrine factors acting through the natriuretic peptide system regulating cell proliferation, vessel tone, inflammatory processes, neurohumoral pathways, fluids, and electrolyte balance. The three most studied peptides are atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), and C-Type natriuretic peptide (CNP). ANP and BNP are the most relevant NPs as biomarkers for the diagnosis and prognosis of heart failure and underlying cardiovascular diseases, such as cardiac valvular dysfunction, hypertension, coronary artery disease, myocardial infarction, persistent arrhythmias, and cardiomyopathies. Cardiac dysfunctions related to cardiomyocytes stretching in the atria and ventricles are primary elicitors of ANP and BNP release, respectively. ANP and BNP would serve as biomarkers for differentiating cardiac versus noncardiac causes of dyspnea and as a tool for measuring the prognosis of patients with heart failure; nevertheless, BNP has been shown with the highest predictive value, particularly related to pulmonary disorders. Plasma BNP has been reported to help differentiate cardiac from pulmonary etiologies of dyspnea in adults and neonates. Studies have shown that COVID-19 infection also increases serum levels of N-terminal pro b-type natriuretic peptide (NT-proBNP) and BNP. This narrative review assesses aspects of ANP and BNP on their physiology, and predictive values as biomarkers. We present an overview of the NPs' synthesis, structure, storage, and release, as well as receptors and physiological roles. Following, considerations focus on ANP versus BNP, comparing their relevance in settings and diseases associated with respiratory dysfunctions. Finally, we compiled data from guidelines for using BNP as a biomarker in dyspneic patients with cardiac dysfunction, including its considerations in COVID-19.
期刊介绍:
The Yale Journal of Biology and Medicine (YJBM) is a graduate and medical student-run, peer-reviewed, open-access journal dedicated to the publication of original research articles, scientific reviews, articles on medical history, personal perspectives on medicine, policy analyses, case reports, and symposia related to biomedical matters. YJBM is published quarterly and aims to publish articles of interest to both physicians and scientists. YJBM is and has been an internationally distributed journal with a long history of landmark articles. Our contributors feature a notable list of philosophers, statesmen, scientists, and physicians, including Ernst Cassirer, Harvey Cushing, Rene Dubos, Edward Kennedy, Donald Seldin, and Jack Strominger. Our Editorial Board consists of students and faculty members from Yale School of Medicine and Yale University Graduate School of Arts & Sciences. All manuscripts submitted to YJBM are first evaluated on the basis of scientific quality, originality, appropriateness, contribution to the field, and style. Suitable manuscripts are then subject to rigorous, fair, and rapid peer review.