{"title":"热球菌门赖氨酸生物合成的进化。","authors":"Hiromi Nishida, Makoto Nishiyama","doi":"10.1155/2012/745931","DOIUrl":null,"url":null,"abstract":"<p><p>Thermus thermophilus biosynthesizes lysine through the α-aminoadipate (AAA) pathway: this observation was the first discovery of lysine biosynthesis through the AAA pathway in archaea and bacteria. Genes homologous to the T. thermophilus lysine biosynthetic genes are widely distributed in bacteria of the Deinococcus-Thermus phylum. Our phylogenetic analyses strongly suggest that a common ancestor of the Deinococcus-Thermus phylum had the ancestral genes for bacterial lysine biosynthesis through the AAA pathway. In addition, our findings suggest that the ancestor lacked genes for lysine biosynthesis through the diaminopimelate (DAP) pathway. Interestingly, Deinococcus proteolyticus does not have the genes for lysine biosynthesis through the AAA pathway but does have the genes for lysine biosynthesis through the DAP pathway. Phylogenetic analyses of D. proteolyticus lysine biosynthetic genes showed that the key gene cluster for the DAP pathway was transferred horizontally from a phylogenetically distant organism.</p>","PeriodicalId":73449,"journal":{"name":"International journal of evolutionary biology","volume":"2012 ","pages":"745931"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2012/745931","citationCount":"10","resultStr":"{\"title\":\"Evolution of lysine biosynthesis in the phylum deinococcus-thermus.\",\"authors\":\"Hiromi Nishida, Makoto Nishiyama\",\"doi\":\"10.1155/2012/745931\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Thermus thermophilus biosynthesizes lysine through the α-aminoadipate (AAA) pathway: this observation was the first discovery of lysine biosynthesis through the AAA pathway in archaea and bacteria. Genes homologous to the T. thermophilus lysine biosynthetic genes are widely distributed in bacteria of the Deinococcus-Thermus phylum. Our phylogenetic analyses strongly suggest that a common ancestor of the Deinococcus-Thermus phylum had the ancestral genes for bacterial lysine biosynthesis through the AAA pathway. In addition, our findings suggest that the ancestor lacked genes for lysine biosynthesis through the diaminopimelate (DAP) pathway. Interestingly, Deinococcus proteolyticus does not have the genes for lysine biosynthesis through the AAA pathway but does have the genes for lysine biosynthesis through the DAP pathway. Phylogenetic analyses of D. proteolyticus lysine biosynthetic genes showed that the key gene cluster for the DAP pathway was transferred horizontally from a phylogenetically distant organism.</p>\",\"PeriodicalId\":73449,\"journal\":{\"name\":\"International journal of evolutionary biology\",\"volume\":\"2012 \",\"pages\":\"745931\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2012/745931\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of evolutionary biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2012/745931\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of evolutionary biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2012/745931","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Evolution of lysine biosynthesis in the phylum deinococcus-thermus.
Thermus thermophilus biosynthesizes lysine through the α-aminoadipate (AAA) pathway: this observation was the first discovery of lysine biosynthesis through the AAA pathway in archaea and bacteria. Genes homologous to the T. thermophilus lysine biosynthetic genes are widely distributed in bacteria of the Deinococcus-Thermus phylum. Our phylogenetic analyses strongly suggest that a common ancestor of the Deinococcus-Thermus phylum had the ancestral genes for bacterial lysine biosynthesis through the AAA pathway. In addition, our findings suggest that the ancestor lacked genes for lysine biosynthesis through the diaminopimelate (DAP) pathway. Interestingly, Deinococcus proteolyticus does not have the genes for lysine biosynthesis through the AAA pathway but does have the genes for lysine biosynthesis through the DAP pathway. Phylogenetic analyses of D. proteolyticus lysine biosynthetic genes showed that the key gene cluster for the DAP pathway was transferred horizontally from a phylogenetically distant organism.