Stephen Maddocks, Nurul F. Samuri, Katerina Ridge, Ian D. Cunningham, William J. S. Lockley
{"title":"胺基氧化氘催化交换烷基硝基芳烃的苯代氘化","authors":"Stephen Maddocks, Nurul F. Samuri, Katerina Ridge, Ian D. Cunningham, William J. S. Lockley","doi":"10.1002/jlcr.4008","DOIUrl":null,"url":null,"abstract":"<p>This paper describes the deuterium-labelling of alkylnitroaromatics by base-catalysed exchange with deuterium oxide. As the alkyl protons alpha to the aromatic ring are the most acidic sites in the molecule, regioselective hydrogen isotope exchange at this benzylic location leads to a regiospecifically deuterated product. The exchange labelling takes place in good yields and with high atom% abundance in the presence of an appropriate nitrogen base. Alkylated 2,4-dinitrobenzenes deuterate at room temperature under catalysis by triethylamine, whilst alkylated 2-nitro- or 4-nitrobenzenes and related mono-nitroaromatics require higher temperatures and catalysis by 1,5-diazobicyclo[4.3.0]non-5-ene (DBN). The labelling reactions require an inert gas atmosphere, but otherwise are simple and high yielding with no obvious byproducts. Those compounds in which the benzylic protons are in an <i>ortho</i>-orientation with respect to the nitro group label somewhat more slowly than the analogues where there is a <i>para</i> relationship. In addition, higher alkyl homologues undergo benzylic deuteration at slower rates than methyl.</p>","PeriodicalId":16288,"journal":{"name":"Journal of labelled compounds & radiopharmaceuticals","volume":"66 1","pages":"11-21"},"PeriodicalIF":0.9000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/epdf/10.1002/jlcr.4008","citationCount":"0","resultStr":"{\"title\":\"Benzylic deuteration of alkylnitroaromatics via amine-base catalysed exchange with deuterium oxide\",\"authors\":\"Stephen Maddocks, Nurul F. Samuri, Katerina Ridge, Ian D. Cunningham, William J. S. Lockley\",\"doi\":\"10.1002/jlcr.4008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper describes the deuterium-labelling of alkylnitroaromatics by base-catalysed exchange with deuterium oxide. As the alkyl protons alpha to the aromatic ring are the most acidic sites in the molecule, regioselective hydrogen isotope exchange at this benzylic location leads to a regiospecifically deuterated product. The exchange labelling takes place in good yields and with high atom% abundance in the presence of an appropriate nitrogen base. Alkylated 2,4-dinitrobenzenes deuterate at room temperature under catalysis by triethylamine, whilst alkylated 2-nitro- or 4-nitrobenzenes and related mono-nitroaromatics require higher temperatures and catalysis by 1,5-diazobicyclo[4.3.0]non-5-ene (DBN). The labelling reactions require an inert gas atmosphere, but otherwise are simple and high yielding with no obvious byproducts. Those compounds in which the benzylic protons are in an <i>ortho</i>-orientation with respect to the nitro group label somewhat more slowly than the analogues where there is a <i>para</i> relationship. In addition, higher alkyl homologues undergo benzylic deuteration at slower rates than methyl.</p>\",\"PeriodicalId\":16288,\"journal\":{\"name\":\"Journal of labelled compounds & radiopharmaceuticals\",\"volume\":\"66 1\",\"pages\":\"11-21\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/epdf/10.1002/jlcr.4008\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of labelled compounds & radiopharmaceuticals\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jlcr.4008\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of labelled compounds & radiopharmaceuticals","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jlcr.4008","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Benzylic deuteration of alkylnitroaromatics via amine-base catalysed exchange with deuterium oxide
This paper describes the deuterium-labelling of alkylnitroaromatics by base-catalysed exchange with deuterium oxide. As the alkyl protons alpha to the aromatic ring are the most acidic sites in the molecule, regioselective hydrogen isotope exchange at this benzylic location leads to a regiospecifically deuterated product. The exchange labelling takes place in good yields and with high atom% abundance in the presence of an appropriate nitrogen base. Alkylated 2,4-dinitrobenzenes deuterate at room temperature under catalysis by triethylamine, whilst alkylated 2-nitro- or 4-nitrobenzenes and related mono-nitroaromatics require higher temperatures and catalysis by 1,5-diazobicyclo[4.3.0]non-5-ene (DBN). The labelling reactions require an inert gas atmosphere, but otherwise are simple and high yielding with no obvious byproducts. Those compounds in which the benzylic protons are in an ortho-orientation with respect to the nitro group label somewhat more slowly than the analogues where there is a para relationship. In addition, higher alkyl homologues undergo benzylic deuteration at slower rates than methyl.
期刊介绍:
The Journal of Labelled Compounds and Radiopharmaceuticals publishes all aspects of research dealing with labeled compound preparation and applications of these compounds. This includes tracer methods used in medical, pharmacological, biological, biochemical and chemical research in vitro and in vivo.
The Journal of Labelled Compounds and Radiopharmaceuticals devotes particular attention to biomedical research, diagnostic and therapeutic applications of radiopharmaceuticals, covering all stages of development from basic metabolic research and technological development to preclinical and clinical studies based on physically and chemically well characterized molecular structures, coordination compounds and nano-particles.