{"title":"古细菌和细菌染色体和质粒的碱基组成、DNA大小和二核苷酸频率谱的比较分析。","authors":"Hiromi Nishida","doi":"10.1155/2012/342482","DOIUrl":null,"url":null,"abstract":"<p><p>In the present paper, I compared guanine-cytosine (GC) contents, DNA sizes, and dinucleotide frequency profiles in 109 archaeal chromosomes, 59 archaeal plasmids, 1379 bacterial chromosomes, and 854 bacterial plasmids. In more than 80% of archaeal and bacterial plasmids, the GC content was lower than that of the host chromosome. Furthermore, most of the differences in GC content found between a plasmid and its host chromosome were less than 10%, and the GC content in plasmids and host chromosomes was highly correlated (Pearson's correlation coefficient r = 0.965 in bacteria and 0.917 in archaea). These results support the hypothesis that horizontal gene transfers have occurred frequently via plasmid distribution during evolution. GC content and chromosome size were more highly correlated in bacteria (r = 0.460) than in archaea (r = 0.195). Interestingly, there was a tendency for archaea with plasmids to have higher GC content in the chromosome and plasmid than those without plasmids. Thus, the dinucleotide frequency profile of the archaeal plasmids has a bias toward high GC content.</p>","PeriodicalId":73449,"journal":{"name":"International journal of evolutionary biology","volume":"2012 ","pages":"342482"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2012/342482","citationCount":"69","resultStr":"{\"title\":\"Comparative analyses of base compositions, DNA sizes, and dinucleotide frequency profiles in archaeal and bacterial chromosomes and plasmids.\",\"authors\":\"Hiromi Nishida\",\"doi\":\"10.1155/2012/342482\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In the present paper, I compared guanine-cytosine (GC) contents, DNA sizes, and dinucleotide frequency profiles in 109 archaeal chromosomes, 59 archaeal plasmids, 1379 bacterial chromosomes, and 854 bacterial plasmids. In more than 80% of archaeal and bacterial plasmids, the GC content was lower than that of the host chromosome. Furthermore, most of the differences in GC content found between a plasmid and its host chromosome were less than 10%, and the GC content in plasmids and host chromosomes was highly correlated (Pearson's correlation coefficient r = 0.965 in bacteria and 0.917 in archaea). These results support the hypothesis that horizontal gene transfers have occurred frequently via plasmid distribution during evolution. GC content and chromosome size were more highly correlated in bacteria (r = 0.460) than in archaea (r = 0.195). Interestingly, there was a tendency for archaea with plasmids to have higher GC content in the chromosome and plasmid than those without plasmids. Thus, the dinucleotide frequency profile of the archaeal plasmids has a bias toward high GC content.</p>\",\"PeriodicalId\":73449,\"journal\":{\"name\":\"International journal of evolutionary biology\",\"volume\":\"2012 \",\"pages\":\"342482\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2012/342482\",\"citationCount\":\"69\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of evolutionary biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2012/342482\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of evolutionary biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2012/342482","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Comparative analyses of base compositions, DNA sizes, and dinucleotide frequency profiles in archaeal and bacterial chromosomes and plasmids.
In the present paper, I compared guanine-cytosine (GC) contents, DNA sizes, and dinucleotide frequency profiles in 109 archaeal chromosomes, 59 archaeal plasmids, 1379 bacterial chromosomes, and 854 bacterial plasmids. In more than 80% of archaeal and bacterial plasmids, the GC content was lower than that of the host chromosome. Furthermore, most of the differences in GC content found between a plasmid and its host chromosome were less than 10%, and the GC content in plasmids and host chromosomes was highly correlated (Pearson's correlation coefficient r = 0.965 in bacteria and 0.917 in archaea). These results support the hypothesis that horizontal gene transfers have occurred frequently via plasmid distribution during evolution. GC content and chromosome size were more highly correlated in bacteria (r = 0.460) than in archaea (r = 0.195). Interestingly, there was a tendency for archaea with plasmids to have higher GC content in the chromosome and plasmid than those without plasmids. Thus, the dinucleotide frequency profile of the archaeal plasmids has a bias toward high GC content.