利用碳纳米管和石墨烯进行DNA杂交的无标记电检测。

Dongliang Fu, Lain-Jong Li
{"title":"利用碳纳米管和石墨烯进行DNA杂交的无标记电检测。","authors":"Dongliang Fu,&nbsp;Lain-Jong Li","doi":"10.3402/nano.v1i0.5354","DOIUrl":null,"url":null,"abstract":"<p><p>The interface between biosystems and nanomaterials is emerging for detection of various biomolecules and subtle cellular activities. In particular, the development of cost-effective and sequence-selective DNA detection is urgent for the diagnosis of genetic or pathogenic diseases. Graphene-based nanocarbon materials, such as carbon nanotubes and thin graphene layers, have been employed as biosensors because they are biocompatible, extraordinarily sensitive, and promising for large-area detection. Electrical and label-free detection of DNA can be achieved by monitoring the conductance change of devices fabricated from these carbon materials. Here, the recent advances in this research area are briefly reviewed. The key issues and perspectives of future development are also discussed.</p>","PeriodicalId":74237,"journal":{"name":"Nano reviews","volume":"1 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2010-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3402/nano.v1i0.5354","citationCount":"31","resultStr":"{\"title\":\"Label-free electrical detection of DNA hybridization using carbon nanotubes and graphene.\",\"authors\":\"Dongliang Fu,&nbsp;Lain-Jong Li\",\"doi\":\"10.3402/nano.v1i0.5354\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The interface between biosystems and nanomaterials is emerging for detection of various biomolecules and subtle cellular activities. In particular, the development of cost-effective and sequence-selective DNA detection is urgent for the diagnosis of genetic or pathogenic diseases. Graphene-based nanocarbon materials, such as carbon nanotubes and thin graphene layers, have been employed as biosensors because they are biocompatible, extraordinarily sensitive, and promising for large-area detection. Electrical and label-free detection of DNA can be achieved by monitoring the conductance change of devices fabricated from these carbon materials. Here, the recent advances in this research area are briefly reviewed. The key issues and perspectives of future development are also discussed.</p>\",\"PeriodicalId\":74237,\"journal\":{\"name\":\"Nano reviews\",\"volume\":\"1 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.3402/nano.v1i0.5354\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano reviews\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3402/nano.v1i0.5354\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3402/nano.v1i0.5354","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

摘要

生物系统和纳米材料之间的界面正在出现,用于检测各种生物分子和微妙的细胞活动。特别是,开发具有成本效益和序列选择性的DNA检测对于遗传性或致病性疾病的诊断是迫切需要的。石墨烯基纳米碳材料,如碳纳米管和薄石墨烯层,已经被用作生物传感器,因为它们具有生物相容性,非常敏感,并且有望进行大面积检测。通过监测由这些碳材料制成的器件的电导变化,可以实现DNA的电检测和无标记检测。本文就这一研究领域的最新进展作一简要综述。并对未来发展的关键问题和前景进行了讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Label-free electrical detection of DNA hybridization using carbon nanotubes and graphene.

Label-free electrical detection of DNA hybridization using carbon nanotubes and graphene.

Label-free electrical detection of DNA hybridization using carbon nanotubes and graphene.

Label-free electrical detection of DNA hybridization using carbon nanotubes and graphene.

The interface between biosystems and nanomaterials is emerging for detection of various biomolecules and subtle cellular activities. In particular, the development of cost-effective and sequence-selective DNA detection is urgent for the diagnosis of genetic or pathogenic diseases. Graphene-based nanocarbon materials, such as carbon nanotubes and thin graphene layers, have been employed as biosensors because they are biocompatible, extraordinarily sensitive, and promising for large-area detection. Electrical and label-free detection of DNA can be achieved by monitoring the conductance change of devices fabricated from these carbon materials. Here, the recent advances in this research area are briefly reviewed. The key issues and perspectives of future development are also discussed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信