{"title":"表观遗传调控的基因表达谱破译四种分子亚型与胃癌的预后和治疗意义。","authors":"Siyuan Weng, Minghao Li, Jinhai Deng, Hui Xu, Yuqing Ren, Zhaokai Zhou, Libo Wang, Yuyuan Zhang, Zhe Xing, Lifeng Li, Zaoqu Liu, Xinwei Han","doi":"10.1186/s13148-023-01478-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Gastric cancer (GC) is one of the most common malignant tumors of the digestive tract which seriously endangers the health of human beings worldwide. Transcriptomic deregulation by epigenetic mechanisms plays a crucial role in the heterogeneous progression of GC. This study aimed to investigate the impact of epigenetically regulated genes on the prognosis, immune microenvironment, and potential treatment of GC.</p><p><strong>Results: </strong>Under the premise of verifying significant co-regulation of the aberrant frequencies of microRNA (miRNA) correlated (MIRcor) genes and DNA methylation-correlated (METcor) genes. Four GC molecular subtypes were identified and validated by comprehensive clustering of MIRcor and METcor GEPs in 1521 samples from five independent multicenter GC cohorts: cluster 1 was characterized by up-regulated cell proliferation and transformation pathways, with good prognosis outcomes, driven by mutations, and was sensitive to 5-fluorouracil and paclitaxel; cluster 2 performed moderate prognosis and benefited more from apatinib and cisplatin; cluster 3 was featured by an up-regulated ligand-receptor formation-related pathways, poor prognosis, an immunosuppression phenotype with low tumor purity, resistant to chemotherapy (e.g., 5-fluorouracil, paclitaxel, and cisplatin), and targeted therapy drug (apatinib) and sensitive to dasatinib; cluster 4 was characterized as an immune-activating phenotype, with advanced tumor stages, benefit more from immunotherapy and displayed worst prognosis.</p><p><strong>Conclusions: </strong>According to the epigenetically regulated GEPs, we developed four robust GC molecular subtypes, which facilitated the understanding of the epigenetic mechanisms underlying GC heterogeneity, offering an optimized decision-making and surveillance platform for GC patients.</p>","PeriodicalId":48652,"journal":{"name":"Clinical Epigenetics","volume":"15 1","pages":"64"},"PeriodicalIF":5.7000,"publicationDate":"2023-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10105476/pdf/","citationCount":"0","resultStr":"{\"title\":\"Epigenetically regulated gene expression profiles decipher four molecular subtypes with prognostic and therapeutic implications in gastric cancer.\",\"authors\":\"Siyuan Weng, Minghao Li, Jinhai Deng, Hui Xu, Yuqing Ren, Zhaokai Zhou, Libo Wang, Yuyuan Zhang, Zhe Xing, Lifeng Li, Zaoqu Liu, Xinwei Han\",\"doi\":\"10.1186/s13148-023-01478-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Gastric cancer (GC) is one of the most common malignant tumors of the digestive tract which seriously endangers the health of human beings worldwide. Transcriptomic deregulation by epigenetic mechanisms plays a crucial role in the heterogeneous progression of GC. This study aimed to investigate the impact of epigenetically regulated genes on the prognosis, immune microenvironment, and potential treatment of GC.</p><p><strong>Results: </strong>Under the premise of verifying significant co-regulation of the aberrant frequencies of microRNA (miRNA) correlated (MIRcor) genes and DNA methylation-correlated (METcor) genes. Four GC molecular subtypes were identified and validated by comprehensive clustering of MIRcor and METcor GEPs in 1521 samples from five independent multicenter GC cohorts: cluster 1 was characterized by up-regulated cell proliferation and transformation pathways, with good prognosis outcomes, driven by mutations, and was sensitive to 5-fluorouracil and paclitaxel; cluster 2 performed moderate prognosis and benefited more from apatinib and cisplatin; cluster 3 was featured by an up-regulated ligand-receptor formation-related pathways, poor prognosis, an immunosuppression phenotype with low tumor purity, resistant to chemotherapy (e.g., 5-fluorouracil, paclitaxel, and cisplatin), and targeted therapy drug (apatinib) and sensitive to dasatinib; cluster 4 was characterized as an immune-activating phenotype, with advanced tumor stages, benefit more from immunotherapy and displayed worst prognosis.</p><p><strong>Conclusions: </strong>According to the epigenetically regulated GEPs, we developed four robust GC molecular subtypes, which facilitated the understanding of the epigenetic mechanisms underlying GC heterogeneity, offering an optimized decision-making and surveillance platform for GC patients.</p>\",\"PeriodicalId\":48652,\"journal\":{\"name\":\"Clinical Epigenetics\",\"volume\":\"15 1\",\"pages\":\"64\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2023-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10105476/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical Epigenetics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13148-023-01478-w\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Epigenetics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13148-023-01478-w","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
Epigenetically regulated gene expression profiles decipher four molecular subtypes with prognostic and therapeutic implications in gastric cancer.
Background: Gastric cancer (GC) is one of the most common malignant tumors of the digestive tract which seriously endangers the health of human beings worldwide. Transcriptomic deregulation by epigenetic mechanisms plays a crucial role in the heterogeneous progression of GC. This study aimed to investigate the impact of epigenetically regulated genes on the prognosis, immune microenvironment, and potential treatment of GC.
Results: Under the premise of verifying significant co-regulation of the aberrant frequencies of microRNA (miRNA) correlated (MIRcor) genes and DNA methylation-correlated (METcor) genes. Four GC molecular subtypes were identified and validated by comprehensive clustering of MIRcor and METcor GEPs in 1521 samples from five independent multicenter GC cohorts: cluster 1 was characterized by up-regulated cell proliferation and transformation pathways, with good prognosis outcomes, driven by mutations, and was sensitive to 5-fluorouracil and paclitaxel; cluster 2 performed moderate prognosis and benefited more from apatinib and cisplatin; cluster 3 was featured by an up-regulated ligand-receptor formation-related pathways, poor prognosis, an immunosuppression phenotype with low tumor purity, resistant to chemotherapy (e.g., 5-fluorouracil, paclitaxel, and cisplatin), and targeted therapy drug (apatinib) and sensitive to dasatinib; cluster 4 was characterized as an immune-activating phenotype, with advanced tumor stages, benefit more from immunotherapy and displayed worst prognosis.
Conclusions: According to the epigenetically regulated GEPs, we developed four robust GC molecular subtypes, which facilitated the understanding of the epigenetic mechanisms underlying GC heterogeneity, offering an optimized decision-making and surveillance platform for GC patients.
Clinical EpigeneticsBiochemistry, Genetics and Molecular Biology-Developmental Biology
CiteScore
8.90
自引率
5.30%
发文量
150
审稿时长
12 weeks
期刊介绍:
Clinical Epigenetics, the official journal of the Clinical Epigenetics Society, is an open access, peer-reviewed journal that encompasses all aspects of epigenetic principles and mechanisms in relation to human disease, diagnosis and therapy. Clinical trials and research in disease model organisms are particularly welcome.