{"title":"苷盐保护中国仓鼠 V79 细胞免受 CL-20 诱导的基因毒性和氧化应激。","authors":"Cunzhi Li, Hui Deng, Zhiyong Liu, Xiaoqiang Lv, Wenzhi Gao, Yongchao Gao, Junhong Gao, Lifang Hu","doi":"10.1093/toxres/tfad004","DOIUrl":null,"url":null,"abstract":"<p><p>Hexanitrohexaazaisowurtzitane (CL-20) is a high-energy elemental explosive widely used in chemical and military fields. CL-20 harms environmental fate, biosafety, and occupational health. However, there is little known about the genotoxicity of CL-20, in particular its molecular mechanisms. Therefore, this study was framed to investigate the genotoxic mechanisms of CL-20 in V79 cells and evaluate whether the genotoxicity could be diminished by pretreating the cells with salidroside. The results showed that CL-20-induced genotoxicity in V79 cells primarily through oxidative damage to DNA and mitochondrial DNA (mtDNA) mutation. Salidroside could significantly reduce the inhibitory effect of CL-20 on the growth of V79 cells and reduce the levels of reactive oxygen species (ROS), 8-hydroxy-2 deoxyguanosine (8-OHdG), and malondialdehyde (MDA). Salidroside also restored CL-20-induced superoxide dismutase (SOD) and glutathione (GSH) in V79 cells. As a result, salidroside attenuated the DNA damage and mutations induced by CL-20. In conclusion, oxidative stress may be involved in CL-20-induced genotoxicity in V79 cells. Salidroside could protect V79 cells from oxidative damage induced by CL-20, mechanism of which may be related to scavenging intracellular ROS and increasing the expression of proteins that can promote the activity of intracellular antioxidant enzymes. The present study for the mechanisms and protection of CL-20-mediated genotoxicity will help further to understand the toxic effects of CL-20 and provide information on the therapeutic effect of salidroside in CL-20-induced genotoxicity.</p>","PeriodicalId":105,"journal":{"name":"Toxicology Research","volume":"12 1","pages":"133-142"},"PeriodicalIF":2.2000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9972843/pdf/","citationCount":"0","resultStr":"{\"title\":\"Salidroside protect Chinese hamster V79 cells from genotoxicity and oxidative stress induced by CL-20.\",\"authors\":\"Cunzhi Li, Hui Deng, Zhiyong Liu, Xiaoqiang Lv, Wenzhi Gao, Yongchao Gao, Junhong Gao, Lifang Hu\",\"doi\":\"10.1093/toxres/tfad004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hexanitrohexaazaisowurtzitane (CL-20) is a high-energy elemental explosive widely used in chemical and military fields. CL-20 harms environmental fate, biosafety, and occupational health. However, there is little known about the genotoxicity of CL-20, in particular its molecular mechanisms. Therefore, this study was framed to investigate the genotoxic mechanisms of CL-20 in V79 cells and evaluate whether the genotoxicity could be diminished by pretreating the cells with salidroside. The results showed that CL-20-induced genotoxicity in V79 cells primarily through oxidative damage to DNA and mitochondrial DNA (mtDNA) mutation. Salidroside could significantly reduce the inhibitory effect of CL-20 on the growth of V79 cells and reduce the levels of reactive oxygen species (ROS), 8-hydroxy-2 deoxyguanosine (8-OHdG), and malondialdehyde (MDA). Salidroside also restored CL-20-induced superoxide dismutase (SOD) and glutathione (GSH) in V79 cells. As a result, salidroside attenuated the DNA damage and mutations induced by CL-20. In conclusion, oxidative stress may be involved in CL-20-induced genotoxicity in V79 cells. Salidroside could protect V79 cells from oxidative damage induced by CL-20, mechanism of which may be related to scavenging intracellular ROS and increasing the expression of proteins that can promote the activity of intracellular antioxidant enzymes. The present study for the mechanisms and protection of CL-20-mediated genotoxicity will help further to understand the toxic effects of CL-20 and provide information on the therapeutic effect of salidroside in CL-20-induced genotoxicity.</p>\",\"PeriodicalId\":105,\"journal\":{\"name\":\"Toxicology Research\",\"volume\":\"12 1\",\"pages\":\"133-142\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9972843/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxicology Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/toxres/tfad004\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/toxres/tfad004","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TOXICOLOGY","Score":null,"Total":0}
Salidroside protect Chinese hamster V79 cells from genotoxicity and oxidative stress induced by CL-20.
Hexanitrohexaazaisowurtzitane (CL-20) is a high-energy elemental explosive widely used in chemical and military fields. CL-20 harms environmental fate, biosafety, and occupational health. However, there is little known about the genotoxicity of CL-20, in particular its molecular mechanisms. Therefore, this study was framed to investigate the genotoxic mechanisms of CL-20 in V79 cells and evaluate whether the genotoxicity could be diminished by pretreating the cells with salidroside. The results showed that CL-20-induced genotoxicity in V79 cells primarily through oxidative damage to DNA and mitochondrial DNA (mtDNA) mutation. Salidroside could significantly reduce the inhibitory effect of CL-20 on the growth of V79 cells and reduce the levels of reactive oxygen species (ROS), 8-hydroxy-2 deoxyguanosine (8-OHdG), and malondialdehyde (MDA). Salidroside also restored CL-20-induced superoxide dismutase (SOD) and glutathione (GSH) in V79 cells. As a result, salidroside attenuated the DNA damage and mutations induced by CL-20. In conclusion, oxidative stress may be involved in CL-20-induced genotoxicity in V79 cells. Salidroside could protect V79 cells from oxidative damage induced by CL-20, mechanism of which may be related to scavenging intracellular ROS and increasing the expression of proteins that can promote the activity of intracellular antioxidant enzymes. The present study for the mechanisms and protection of CL-20-mediated genotoxicity will help further to understand the toxic effects of CL-20 and provide information on the therapeutic effect of salidroside in CL-20-induced genotoxicity.