YaNan Liu, YuSheng Zhang, ZeLin Wang, Zi Teng, Peng Zhu, MeiNa Xie, FuJun Liu, XueXia Liu
{"title":"褪黑素提高小鼠精子与卵母细胞结合的能力。","authors":"YaNan Liu, YuSheng Zhang, ZeLin Wang, Zi Teng, Peng Zhu, MeiNa Xie, FuJun Liu, XueXia Liu","doi":"10.1071/RD23006","DOIUrl":null,"url":null,"abstract":"<p><strong>Context and aims: </strong>Melatonin is a powerful antioxidant regulating various biological functions, including alleviating male reproductive damage under pathological conditions. Here, we aim to analyse the effect of melatonin on normal male reproduction in mice.</p><p><strong>Methods: </strong>Male mice received an intraperitoneal injection of melatonin (10mg/kg body weight) for 35 consecutive days. The testis and epididymis morphology, and epididymal sperm parameters were examined. PCNA, HSPA2, SYCP3, ZO-1 and CYP11A1 expressions in epididymis or testis were detected by immunohistochemistry or Western blotting. Male fertility was determined by in vivo and in vitro fertilisation (IVF) experiments. The differentially expressed sperm proteins were identified by proteomics.</p><p><strong>Key results: </strong>No visible structural changes and oxidative damage in the testis and epididymis, and no significant side effects on testis weight, testosterone levels, sperm motility, and sperm morphology were observed in the melatonin-treatment group compared with the control group. Spermatogenesis-related molecules of PCNA, SYCP3, ZO-1, and CYP11A1 showed no significant differences in melatonin-treated testis. However, PCNA and HSPA2 increased their expressions in the epididymal initial segments in the melatonin-treatment group. Normal sperm fertilisation, two-cell and blastocyst development were observed in the melatonin-treated group, but melatonin significantly enhanced the sperm binding ability characterised as more sperm binding to one oocyte (control 7.2±1.3 versus melatonin 11.8±1.5). Sperm proteomics demonstrated that melatonin treatment enhanced the biological process of cell adhesion in sperm.</p><p><strong>Conclusions and implications: </strong>This study suggests that melatonin can promote sperm maturation and sperm function, providing important information for further research on the physiological function and protective effect of melatonin in male reproduction.</p>","PeriodicalId":20932,"journal":{"name":"Reproduction, fertility, and development","volume":"35 7","pages":"445-457"},"PeriodicalIF":1.8000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Melatonin improves the ability of spermatozoa to bind with oocytes in the mouse.\",\"authors\":\"YaNan Liu, YuSheng Zhang, ZeLin Wang, Zi Teng, Peng Zhu, MeiNa Xie, FuJun Liu, XueXia Liu\",\"doi\":\"10.1071/RD23006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Context and aims: </strong>Melatonin is a powerful antioxidant regulating various biological functions, including alleviating male reproductive damage under pathological conditions. Here, we aim to analyse the effect of melatonin on normal male reproduction in mice.</p><p><strong>Methods: </strong>Male mice received an intraperitoneal injection of melatonin (10mg/kg body weight) for 35 consecutive days. The testis and epididymis morphology, and epididymal sperm parameters were examined. PCNA, HSPA2, SYCP3, ZO-1 and CYP11A1 expressions in epididymis or testis were detected by immunohistochemistry or Western blotting. Male fertility was determined by in vivo and in vitro fertilisation (IVF) experiments. The differentially expressed sperm proteins were identified by proteomics.</p><p><strong>Key results: </strong>No visible structural changes and oxidative damage in the testis and epididymis, and no significant side effects on testis weight, testosterone levels, sperm motility, and sperm morphology were observed in the melatonin-treatment group compared with the control group. Spermatogenesis-related molecules of PCNA, SYCP3, ZO-1, and CYP11A1 showed no significant differences in melatonin-treated testis. However, PCNA and HSPA2 increased their expressions in the epididymal initial segments in the melatonin-treatment group. Normal sperm fertilisation, two-cell and blastocyst development were observed in the melatonin-treated group, but melatonin significantly enhanced the sperm binding ability characterised as more sperm binding to one oocyte (control 7.2±1.3 versus melatonin 11.8±1.5). Sperm proteomics demonstrated that melatonin treatment enhanced the biological process of cell adhesion in sperm.</p><p><strong>Conclusions and implications: </strong>This study suggests that melatonin can promote sperm maturation and sperm function, providing important information for further research on the physiological function and protective effect of melatonin in male reproduction.</p>\",\"PeriodicalId\":20932,\"journal\":{\"name\":\"Reproduction, fertility, and development\",\"volume\":\"35 7\",\"pages\":\"445-457\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reproduction, fertility, and development\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1071/RD23006\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"DEVELOPMENTAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reproduction, fertility, and development","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1071/RD23006","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
Melatonin improves the ability of spermatozoa to bind with oocytes in the mouse.
Context and aims: Melatonin is a powerful antioxidant regulating various biological functions, including alleviating male reproductive damage under pathological conditions. Here, we aim to analyse the effect of melatonin on normal male reproduction in mice.
Methods: Male mice received an intraperitoneal injection of melatonin (10mg/kg body weight) for 35 consecutive days. The testis and epididymis morphology, and epididymal sperm parameters were examined. PCNA, HSPA2, SYCP3, ZO-1 and CYP11A1 expressions in epididymis or testis were detected by immunohistochemistry or Western blotting. Male fertility was determined by in vivo and in vitro fertilisation (IVF) experiments. The differentially expressed sperm proteins were identified by proteomics.
Key results: No visible structural changes and oxidative damage in the testis and epididymis, and no significant side effects on testis weight, testosterone levels, sperm motility, and sperm morphology were observed in the melatonin-treatment group compared with the control group. Spermatogenesis-related molecules of PCNA, SYCP3, ZO-1, and CYP11A1 showed no significant differences in melatonin-treated testis. However, PCNA and HSPA2 increased their expressions in the epididymal initial segments in the melatonin-treatment group. Normal sperm fertilisation, two-cell and blastocyst development were observed in the melatonin-treated group, but melatonin significantly enhanced the sperm binding ability characterised as more sperm binding to one oocyte (control 7.2±1.3 versus melatonin 11.8±1.5). Sperm proteomics demonstrated that melatonin treatment enhanced the biological process of cell adhesion in sperm.
Conclusions and implications: This study suggests that melatonin can promote sperm maturation and sperm function, providing important information for further research on the physiological function and protective effect of melatonin in male reproduction.
期刊介绍:
Reproduction, Fertility and Development is an international journal for the publication of original and significant contributions on vertebrate reproductive and developmental biology. Subject areas include, but are not limited to: physiology, biochemistry, cell and molecular biology, endocrinology, genetics and epigenetics, behaviour, immunology and the development of reproductive technologies in humans, livestock and wildlife, and in pest management.
Reproduction, Fertility and Development is a valuable resource for research scientists working in industry or academia on reproductive and developmental biology, clinicians and veterinarians interested in the basic science underlying their disciplines, and students.
Reproduction, Fertility and Development is the official journal of the International Embryo Technology Society and the Society for Reproductive Biology.
Reproduction, Fertility and Development is published with the endorsement of the Commonwealth Scientific and Industrial Research Organisation (CSIRO) and the Australian Academy of Science.