基于组合加权的大规模MOOC群体推荐决策框架。

IF 3.6 4区 管理学 Q2 MANAGEMENT
Chonghui Zhang, Weihua Su, Sichao Chen, Shouzhen Zeng, Huchang Liao
{"title":"基于组合加权的大规模MOOC群体推荐决策框架。","authors":"Chonghui Zhang,&nbsp;Weihua Su,&nbsp;Sichao Chen,&nbsp;Shouzhen Zeng,&nbsp;Huchang Liao","doi":"10.1007/s10726-023-09816-2","DOIUrl":null,"url":null,"abstract":"<p><p>Massive open online courses (MOOC) are free learning courses based on online platforms for higher education, which not only promote the open sharing of learning resources, but also lead to serious information overload. However, there are many courses on MOOCs, and it can be difficult for users to choose courses that match their individual or group preferences. Therefore, a combined weighting based large-scale group decision-making approach is proposed to implement MOOC group recommendations. First, based on the MOOC operation mode, we decompose the course content into three stages, namely pre-class, in-class, and post-class, and then the curriculum-arrangement-movement- performance evaluation framework is constructed. Second, the probabilistic linguistic criteria importance through intercriteria correlation method is employed to obtain the objective weighting of the criterion. Meanwhile, the word embedding model is utilized to vectorize online reviews, and the subjective weighting of the criteria are acquired by calculating the text similarity. The combined weighting then can be obtained by fusing the subjective and objective weighting. Based on this, the PL-MULTIMIIRA approach and Borda rule is employed to rank the alternatives for group recommendation, and an easy-to-use formula for group satisfaction is proposed to evaluate the effect of the proposed method. Furthermore, a case study is conducted to group recommendations for statistical MOOCs. Finally, the robustness and effectiveness of the proposed approach were verified through sensitivity analysis as well as comparative analysis.</p>","PeriodicalId":47553,"journal":{"name":"Group Decision and Negotiation","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9940689/pdf/","citationCount":"1","resultStr":"{\"title\":\"A Combined Weighting Based Large Scale Group Decision Making Framework for MOOC Group Recommendation.\",\"authors\":\"Chonghui Zhang,&nbsp;Weihua Su,&nbsp;Sichao Chen,&nbsp;Shouzhen Zeng,&nbsp;Huchang Liao\",\"doi\":\"10.1007/s10726-023-09816-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Massive open online courses (MOOC) are free learning courses based on online platforms for higher education, which not only promote the open sharing of learning resources, but also lead to serious information overload. However, there are many courses on MOOCs, and it can be difficult for users to choose courses that match their individual or group preferences. Therefore, a combined weighting based large-scale group decision-making approach is proposed to implement MOOC group recommendations. First, based on the MOOC operation mode, we decompose the course content into three stages, namely pre-class, in-class, and post-class, and then the curriculum-arrangement-movement- performance evaluation framework is constructed. Second, the probabilistic linguistic criteria importance through intercriteria correlation method is employed to obtain the objective weighting of the criterion. Meanwhile, the word embedding model is utilized to vectorize online reviews, and the subjective weighting of the criteria are acquired by calculating the text similarity. The combined weighting then can be obtained by fusing the subjective and objective weighting. Based on this, the PL-MULTIMIIRA approach and Borda rule is employed to rank the alternatives for group recommendation, and an easy-to-use formula for group satisfaction is proposed to evaluate the effect of the proposed method. Furthermore, a case study is conducted to group recommendations for statistical MOOCs. Finally, the robustness and effectiveness of the proposed approach were verified through sensitivity analysis as well as comparative analysis.</p>\",\"PeriodicalId\":47553,\"journal\":{\"name\":\"Group Decision and Negotiation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9940689/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Group Decision and Negotiation\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://doi.org/10.1007/s10726-023-09816-2\",\"RegionNum\":4,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MANAGEMENT\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Group Decision and Negotiation","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1007/s10726-023-09816-2","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MANAGEMENT","Score":null,"Total":0}
引用次数: 1

摘要

大规模在线开放课程(MOOC)是基于高等教育在线平台的免费学习课程,它既促进了学习资源的开放共享,也导致了严重的信息过载。然而,mooc上有很多课程,用户很难选择符合他们个人或群体偏好的课程。因此,本文提出了一种基于组合加权的大规模群体决策方法来实现MOOC群体建议。首先,基于MOOC的运营模式,将课程内容分解为课前、课中、课后三个阶段,构建课程-安排-运动-绩效评价框架。其次,通过准则间关联法获得概率语言准则的重要性,得到准则的客观权重;同时,利用词嵌入模型对在线评论进行矢量化,并通过计算文本相似度获得评判标准的主观权重。然后将主客观权重融合,得到组合权重。在此基础上,采用PL-MULTIMIIRA方法和Borda规则对群体推荐的备选方案进行排序,并提出一个易于使用的群体满意度公式来评价所提方法的效果。此外,本文还对统计类mooc的分组推荐进行了案例研究。最后,通过灵敏度分析和对比分析验证了该方法的鲁棒性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Combined Weighting Based Large Scale Group Decision Making Framework for MOOC Group Recommendation.

A Combined Weighting Based Large Scale Group Decision Making Framework for MOOC Group Recommendation.

A Combined Weighting Based Large Scale Group Decision Making Framework for MOOC Group Recommendation.

A Combined Weighting Based Large Scale Group Decision Making Framework for MOOC Group Recommendation.

Massive open online courses (MOOC) are free learning courses based on online platforms for higher education, which not only promote the open sharing of learning resources, but also lead to serious information overload. However, there are many courses on MOOCs, and it can be difficult for users to choose courses that match their individual or group preferences. Therefore, a combined weighting based large-scale group decision-making approach is proposed to implement MOOC group recommendations. First, based on the MOOC operation mode, we decompose the course content into three stages, namely pre-class, in-class, and post-class, and then the curriculum-arrangement-movement- performance evaluation framework is constructed. Second, the probabilistic linguistic criteria importance through intercriteria correlation method is employed to obtain the objective weighting of the criterion. Meanwhile, the word embedding model is utilized to vectorize online reviews, and the subjective weighting of the criteria are acquired by calculating the text similarity. The combined weighting then can be obtained by fusing the subjective and objective weighting. Based on this, the PL-MULTIMIIRA approach and Borda rule is employed to rank the alternatives for group recommendation, and an easy-to-use formula for group satisfaction is proposed to evaluate the effect of the proposed method. Furthermore, a case study is conducted to group recommendations for statistical MOOCs. Finally, the robustness and effectiveness of the proposed approach were verified through sensitivity analysis as well as comparative analysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.70
自引率
6.70%
发文量
32
期刊介绍: The idea underlying the journal, Group Decision and Negotiation, emerges from evolving, unifying approaches to group decision and negotiation processes. These processes are complex and self-organizing involving multiplayer, multicriteria, ill-structured, evolving, dynamic problems. Approaches include (1) computer group decision and negotiation support systems (GDNSS), (2) artificial intelligence and management science, (3) applied game theory, experiment and social choice, and (4) cognitive/behavioral sciences in group decision and negotiation. A number of research studies combine two or more of these fields. The journal provides a publication vehicle for theoretical and empirical research, and real-world applications and case studies. In defining the domain of group decision and negotiation, the term `group'' is interpreted to comprise all multiplayer contexts. Thus, organizational decision support systems providing organization-wide support are included. Group decision and negotiation refers to the whole process or flow of activities relevant to group decision and negotiation, not only to the final choice itself, e.g. scanning, communication and information sharing, problem definition (representation) and evolution, alternative generation and social-emotional interaction. Descriptive, normative and design viewpoints are of interest. Thus, Group Decision and Negotiation deals broadly with relation and coordination in group processes. Areas of application include intraorganizational coordination (as in operations management and integrated design, production, finance, marketing and distribution, e.g. as in new products and global coordination), computer supported collaborative work, labor-management negotiations, interorganizational negotiations, (business, government and nonprofits -- e.g. joint ventures), international (intercultural) negotiations, environmental negotiations, etc. The journal also covers developments of software f or group decision and negotiation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信