{"title":"单分子定位的计算分辨率——噪声水平和发射器密度的影响。","authors":"Mathias Hockmann, Stefan Kunis, Rainer Kurre","doi":"10.1515/hsz-2022-0301","DOIUrl":null,"url":null,"abstract":"<p><p>Classical fluorescence microscopy is a powerful technique to image biological specimen under close-to-native conditions, but light diffraction limits its optical resolution to 200-300 nm-two orders of magnitude worse than the size of biomolecules. Assuming single fluorescent emitters, the final image of the optical system can be described by a convolution with the point spread function (PSF) smearing out details below the size of the PSF. In mathematical terms, fluorescence microscopy produces bandlimited space-continuous images that can be recovered from their spatial samples under the conditions of the classical Shannon-Nyquist theorem. During the past two decades, several single molecule localization techniques have been established and these allow for the determination of molecular positions with sub-pixel accuracy. Without noise, single emitter positions can be recovered precisely - no matter how close they are. We review recent work on the computational resolution limit with a sharp phase transition between two scenarios: 1) where emitters are well-separated with respect to the bandlimit and can be recovered up to the noise level and 2) closely distributed emitters which results in a strong noise amplification in the worst case. We close by discussing additional pitfalls using single molecule localization techniques based on structured illumination.</p>","PeriodicalId":8885,"journal":{"name":"Biological Chemistry","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2023-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Computational resolution in single molecule localization - impact of noise level and emitter density.\",\"authors\":\"Mathias Hockmann, Stefan Kunis, Rainer Kurre\",\"doi\":\"10.1515/hsz-2022-0301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Classical fluorescence microscopy is a powerful technique to image biological specimen under close-to-native conditions, but light diffraction limits its optical resolution to 200-300 nm-two orders of magnitude worse than the size of biomolecules. Assuming single fluorescent emitters, the final image of the optical system can be described by a convolution with the point spread function (PSF) smearing out details below the size of the PSF. In mathematical terms, fluorescence microscopy produces bandlimited space-continuous images that can be recovered from their spatial samples under the conditions of the classical Shannon-Nyquist theorem. During the past two decades, several single molecule localization techniques have been established and these allow for the determination of molecular positions with sub-pixel accuracy. Without noise, single emitter positions can be recovered precisely - no matter how close they are. We review recent work on the computational resolution limit with a sharp phase transition between two scenarios: 1) where emitters are well-separated with respect to the bandlimit and can be recovered up to the noise level and 2) closely distributed emitters which results in a strong noise amplification in the worst case. We close by discussing additional pitfalls using single molecule localization techniques based on structured illumination.</p>\",\"PeriodicalId\":8885,\"journal\":{\"name\":\"Biological Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biological Chemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1515/hsz-2022-0301\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Chemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1515/hsz-2022-0301","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Computational resolution in single molecule localization - impact of noise level and emitter density.
Classical fluorescence microscopy is a powerful technique to image biological specimen under close-to-native conditions, but light diffraction limits its optical resolution to 200-300 nm-two orders of magnitude worse than the size of biomolecules. Assuming single fluorescent emitters, the final image of the optical system can be described by a convolution with the point spread function (PSF) smearing out details below the size of the PSF. In mathematical terms, fluorescence microscopy produces bandlimited space-continuous images that can be recovered from their spatial samples under the conditions of the classical Shannon-Nyquist theorem. During the past two decades, several single molecule localization techniques have been established and these allow for the determination of molecular positions with sub-pixel accuracy. Without noise, single emitter positions can be recovered precisely - no matter how close they are. We review recent work on the computational resolution limit with a sharp phase transition between two scenarios: 1) where emitters are well-separated with respect to the bandlimit and can be recovered up to the noise level and 2) closely distributed emitters which results in a strong noise amplification in the worst case. We close by discussing additional pitfalls using single molecule localization techniques based on structured illumination.
期刊介绍:
Biological Chemistry keeps you up-to-date with all new developments in the molecular life sciences. In addition to original research reports, authoritative reviews written by leading researchers in the field keep you informed about the latest advances in the molecular life sciences. Rapid, yet rigorous reviewing ensures fast access to recent research results of exceptional significance in the biological sciences. Papers are published in a "Just Accepted" format within approx.72 hours of acceptance.