Vlad Honcharov, Jiawei Li, Maribel Sierra, Natalie A Rivadeneira, Kristan Olazo, Thu T Nguyen, Tim K Mackey, Urmimala Sarkar
{"title":"公众人物的疫苗接种言论与疫苗犹豫不决:推特回顾性分析","authors":"Vlad Honcharov, Jiawei Li, Maribel Sierra, Natalie A Rivadeneira, Kristan Olazo, Thu T Nguyen, Tim K Mackey, Urmimala Sarkar","doi":"10.2196/40575","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Social media has emerged as a critical mass communication tool, with both health information and misinformation now spread widely on the web. Prior to the COVID-19 pandemic, some public figures promulgated anti-vaccine attitudes, which spread widely on social media platforms. Although anti-vaccine sentiment has pervaded social media throughout the COVID-19 pandemic, it is unclear to what extent interest in public figures is generating anti-vaccine discourse.</p><p><strong>Objective: </strong>We examined Twitter messages that included anti-vaccination hashtags and mentions of public figures to assess the connection between interest in these individuals and the possible spread of anti-vaccine messages.</p><p><strong>Methods: </strong>We used a data set of COVID-19-related Twitter posts collected from the public streaming application programming interface from March to October 2020 and filtered it for anti-vaccination hashtags \"antivaxxing,\" \"antivaxx,\" \"antivaxxers,\" \"antivax,\" \"anti-vaxxer,\" \"discredit,\" \"undermine,\" \"confidence,\" and \"immune.\" Next, we applied the Biterm Topic model (BTM) to output topic clusters associated with the entire corpus. Topic clusters were manually screened by examining the top 10 posts most highly correlated in each of the 20 clusters, from which we identified 5 clusters most relevant to public figures and vaccination attitudes. We extracted all messages from these clusters and conducted inductive content analysis to characterize the discourse.</p><p><strong>Results: </strong>Our keyword search yielded 118,971 Twitter posts after duplicates were removed, and subsequently, we applied BTM to parse these data into 20 clusters. After removing retweets, we manually screened the top 10 tweets associated with each cluster (200 messages) to identify clusters associated with public figures. Extraction of these clusters yielded 768 posts for inductive analysis. Most messages were either pro-vaccination (n=329, 43%) or neutral about vaccination (n=425, 55%), with only 2% (14/768) including anti-vaccination messages. Three main themes emerged: (1) anti-vaccination accusation, in which the message accused the public figure of holding anti-vaccination beliefs; (2) using \"anti-vax\" as an epithet; and (3) stating or implying the negative public health impact of anti-vaccination discourse.</p><p><strong>Conclusions: </strong>Most discussions surrounding public figures in common hashtags labelled as \"anti-vax\" did not reflect anti-vaccination beliefs. We observed that public figures with known anti-vaccination beliefs face scorn and ridicule on Twitter. Accusing public figures of anti-vaccination attitudes is a means of insulting and discrediting the public figure rather than discrediting vaccines. The majority of posts in our sample condemned public figures expressing anti-vax beliefs by undermining their influence, insulting them, or expressing concerns over public health ramifications. This points to a complex information ecosystem, where anti-vax sentiment may not reside in common anti-vax-related keywords or hashtags, necessitating further assessment of the influence that public figures have on this discourse.</p>","PeriodicalId":73554,"journal":{"name":"JMIR infodemiology","volume":"3 ","pages":"e40575"},"PeriodicalIF":3.5000,"publicationDate":"2023-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10039410/pdf/","citationCount":"0","resultStr":"{\"title\":\"Public Figure Vaccination Rhetoric and Vaccine Hesitancy: Retrospective Twitter Analysis.\",\"authors\":\"Vlad Honcharov, Jiawei Li, Maribel Sierra, Natalie A Rivadeneira, Kristan Olazo, Thu T Nguyen, Tim K Mackey, Urmimala Sarkar\",\"doi\":\"10.2196/40575\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Social media has emerged as a critical mass communication tool, with both health information and misinformation now spread widely on the web. Prior to the COVID-19 pandemic, some public figures promulgated anti-vaccine attitudes, which spread widely on social media platforms. Although anti-vaccine sentiment has pervaded social media throughout the COVID-19 pandemic, it is unclear to what extent interest in public figures is generating anti-vaccine discourse.</p><p><strong>Objective: </strong>We examined Twitter messages that included anti-vaccination hashtags and mentions of public figures to assess the connection between interest in these individuals and the possible spread of anti-vaccine messages.</p><p><strong>Methods: </strong>We used a data set of COVID-19-related Twitter posts collected from the public streaming application programming interface from March to October 2020 and filtered it for anti-vaccination hashtags \\\"antivaxxing,\\\" \\\"antivaxx,\\\" \\\"antivaxxers,\\\" \\\"antivax,\\\" \\\"anti-vaxxer,\\\" \\\"discredit,\\\" \\\"undermine,\\\" \\\"confidence,\\\" and \\\"immune.\\\" Next, we applied the Biterm Topic model (BTM) to output topic clusters associated with the entire corpus. Topic clusters were manually screened by examining the top 10 posts most highly correlated in each of the 20 clusters, from which we identified 5 clusters most relevant to public figures and vaccination attitudes. We extracted all messages from these clusters and conducted inductive content analysis to characterize the discourse.</p><p><strong>Results: </strong>Our keyword search yielded 118,971 Twitter posts after duplicates were removed, and subsequently, we applied BTM to parse these data into 20 clusters. After removing retweets, we manually screened the top 10 tweets associated with each cluster (200 messages) to identify clusters associated with public figures. Extraction of these clusters yielded 768 posts for inductive analysis. Most messages were either pro-vaccination (n=329, 43%) or neutral about vaccination (n=425, 55%), with only 2% (14/768) including anti-vaccination messages. Three main themes emerged: (1) anti-vaccination accusation, in which the message accused the public figure of holding anti-vaccination beliefs; (2) using \\\"anti-vax\\\" as an epithet; and (3) stating or implying the negative public health impact of anti-vaccination discourse.</p><p><strong>Conclusions: </strong>Most discussions surrounding public figures in common hashtags labelled as \\\"anti-vax\\\" did not reflect anti-vaccination beliefs. We observed that public figures with known anti-vaccination beliefs face scorn and ridicule on Twitter. Accusing public figures of anti-vaccination attitudes is a means of insulting and discrediting the public figure rather than discrediting vaccines. The majority of posts in our sample condemned public figures expressing anti-vax beliefs by undermining their influence, insulting them, or expressing concerns over public health ramifications. This points to a complex information ecosystem, where anti-vax sentiment may not reside in common anti-vax-related keywords or hashtags, necessitating further assessment of the influence that public figures have on this discourse.</p>\",\"PeriodicalId\":73554,\"journal\":{\"name\":\"JMIR infodemiology\",\"volume\":\"3 \",\"pages\":\"e40575\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2023-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10039410/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JMIR infodemiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2196/40575\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIR infodemiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2196/40575","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
Public Figure Vaccination Rhetoric and Vaccine Hesitancy: Retrospective Twitter Analysis.
Background: Social media has emerged as a critical mass communication tool, with both health information and misinformation now spread widely on the web. Prior to the COVID-19 pandemic, some public figures promulgated anti-vaccine attitudes, which spread widely on social media platforms. Although anti-vaccine sentiment has pervaded social media throughout the COVID-19 pandemic, it is unclear to what extent interest in public figures is generating anti-vaccine discourse.
Objective: We examined Twitter messages that included anti-vaccination hashtags and mentions of public figures to assess the connection between interest in these individuals and the possible spread of anti-vaccine messages.
Methods: We used a data set of COVID-19-related Twitter posts collected from the public streaming application programming interface from March to October 2020 and filtered it for anti-vaccination hashtags "antivaxxing," "antivaxx," "antivaxxers," "antivax," "anti-vaxxer," "discredit," "undermine," "confidence," and "immune." Next, we applied the Biterm Topic model (BTM) to output topic clusters associated with the entire corpus. Topic clusters were manually screened by examining the top 10 posts most highly correlated in each of the 20 clusters, from which we identified 5 clusters most relevant to public figures and vaccination attitudes. We extracted all messages from these clusters and conducted inductive content analysis to characterize the discourse.
Results: Our keyword search yielded 118,971 Twitter posts after duplicates were removed, and subsequently, we applied BTM to parse these data into 20 clusters. After removing retweets, we manually screened the top 10 tweets associated with each cluster (200 messages) to identify clusters associated with public figures. Extraction of these clusters yielded 768 posts for inductive analysis. Most messages were either pro-vaccination (n=329, 43%) or neutral about vaccination (n=425, 55%), with only 2% (14/768) including anti-vaccination messages. Three main themes emerged: (1) anti-vaccination accusation, in which the message accused the public figure of holding anti-vaccination beliefs; (2) using "anti-vax" as an epithet; and (3) stating or implying the negative public health impact of anti-vaccination discourse.
Conclusions: Most discussions surrounding public figures in common hashtags labelled as "anti-vax" did not reflect anti-vaccination beliefs. We observed that public figures with known anti-vaccination beliefs face scorn and ridicule on Twitter. Accusing public figures of anti-vaccination attitudes is a means of insulting and discrediting the public figure rather than discrediting vaccines. The majority of posts in our sample condemned public figures expressing anti-vax beliefs by undermining their influence, insulting them, or expressing concerns over public health ramifications. This points to a complex information ecosystem, where anti-vax sentiment may not reside in common anti-vax-related keywords or hashtags, necessitating further assessment of the influence that public figures have on this discourse.