利用心电图对肥厚性心脏病进行人工智能分类

IF 2.6 Q2 CARDIAC & CARDIOVASCULAR SYSTEMS
Julian S. Haimovich MD , Nate Diamant BS , Shaan Khurshid MD, MPH , Paolo Di Achille PhD , Christopher Reeder PhD , Sam Friedman PhD , Pulkit Singh BA , Walter Spurlock BA , Patrick T. Ellinor MD, PhD , Anthony Philippakis MD, PhD , Puneet Batra PhD , Jennifer E. Ho MD , Steven A. Lubitz MD, MPH
{"title":"利用心电图对肥厚性心脏病进行人工智能分类","authors":"Julian S. Haimovich MD ,&nbsp;Nate Diamant BS ,&nbsp;Shaan Khurshid MD, MPH ,&nbsp;Paolo Di Achille PhD ,&nbsp;Christopher Reeder PhD ,&nbsp;Sam Friedman PhD ,&nbsp;Pulkit Singh BA ,&nbsp;Walter Spurlock BA ,&nbsp;Patrick T. Ellinor MD, PhD ,&nbsp;Anthony Philippakis MD, PhD ,&nbsp;Puneet Batra PhD ,&nbsp;Jennifer E. Ho MD ,&nbsp;Steven A. Lubitz MD, MPH","doi":"10.1016/j.cvdhj.2023.03.001","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Differentiating among cardiac diseases associated with left ventricular hypertrophy (LVH) informs diagnosis and clinical care.</p></div><div><h3>Objective</h3><p>To evaluate if artificial intelligence–enabled analysis of the 12-lead electrocardiogram (ECG) facilitates automated detection and classification of LVH.</p></div><div><h3>Methods</h3><p>We used a pretrained convolutional neural network to derive numerical representations of 12-lead ECG waveforms from patients in a multi-institutional healthcare system who had cardiac diseases associated with LVH (n = 50,709), including cardiac amyloidosis (n = 304), hypertrophic cardiomyopathy (n = 1056), hypertension (n = 20,802), aortic stenosis (n = 446), and other causes (n = 4766). We then regressed LVH etiologies relative to no LVH on age, sex, and the numerical 12-lead representations using logistic regression (“LVH-Net”). To assess deep learning model performance on single-lead data analogous to mobile ECGs, we also developed 2 single-lead deep learning models by training models on lead I (“LVH-Net Lead I”) or lead II (“LVH-Net Lead II”) from the 12-lead ECG. We compared the performance of the LVH-Net models to alternative models fit on (1) age, sex, and standard ECG measures, and (2) clinical ECG-based rules for diagnosing LVH.</p></div><div><h3>Results</h3><p>The areas under the receiver operator characteristic curve of LVH-Net by specific LVH etiology were cardiac amyloidosis 0.95 [95% CI, 0.93–0.97], hypertrophic cardiomyopathy 0.92 [95% CI, 0.90–0.94], aortic stenosis LVH 0.90 [95% CI, 0.88-0.92], hypertensive LVH 0.76 [95% CI, 0.76-0.77], and other LVH 0.69 [95% CI 0.68-0.71]. The single-lead models also discriminated LVH etiologies well.</p></div><div><h3>Conclusion</h3><p>An artificial intelligence–enabled ECG model is favorable for detection and classification of LVH and outperforms clinical ECG-based rules.</p></div>","PeriodicalId":72527,"journal":{"name":"Cardiovascular digital health journal","volume":"4 2","pages":"Pages 48-59"},"PeriodicalIF":2.6000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10123506/pdf/","citationCount":"2","resultStr":"{\"title\":\"Artificial intelligence–enabled classification of hypertrophic heart diseases using electrocardiograms\",\"authors\":\"Julian S. Haimovich MD ,&nbsp;Nate Diamant BS ,&nbsp;Shaan Khurshid MD, MPH ,&nbsp;Paolo Di Achille PhD ,&nbsp;Christopher Reeder PhD ,&nbsp;Sam Friedman PhD ,&nbsp;Pulkit Singh BA ,&nbsp;Walter Spurlock BA ,&nbsp;Patrick T. Ellinor MD, PhD ,&nbsp;Anthony Philippakis MD, PhD ,&nbsp;Puneet Batra PhD ,&nbsp;Jennifer E. Ho MD ,&nbsp;Steven A. Lubitz MD, MPH\",\"doi\":\"10.1016/j.cvdhj.2023.03.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Differentiating among cardiac diseases associated with left ventricular hypertrophy (LVH) informs diagnosis and clinical care.</p></div><div><h3>Objective</h3><p>To evaluate if artificial intelligence–enabled analysis of the 12-lead electrocardiogram (ECG) facilitates automated detection and classification of LVH.</p></div><div><h3>Methods</h3><p>We used a pretrained convolutional neural network to derive numerical representations of 12-lead ECG waveforms from patients in a multi-institutional healthcare system who had cardiac diseases associated with LVH (n = 50,709), including cardiac amyloidosis (n = 304), hypertrophic cardiomyopathy (n = 1056), hypertension (n = 20,802), aortic stenosis (n = 446), and other causes (n = 4766). We then regressed LVH etiologies relative to no LVH on age, sex, and the numerical 12-lead representations using logistic regression (“LVH-Net”). To assess deep learning model performance on single-lead data analogous to mobile ECGs, we also developed 2 single-lead deep learning models by training models on lead I (“LVH-Net Lead I”) or lead II (“LVH-Net Lead II”) from the 12-lead ECG. We compared the performance of the LVH-Net models to alternative models fit on (1) age, sex, and standard ECG measures, and (2) clinical ECG-based rules for diagnosing LVH.</p></div><div><h3>Results</h3><p>The areas under the receiver operator characteristic curve of LVH-Net by specific LVH etiology were cardiac amyloidosis 0.95 [95% CI, 0.93–0.97], hypertrophic cardiomyopathy 0.92 [95% CI, 0.90–0.94], aortic stenosis LVH 0.90 [95% CI, 0.88-0.92], hypertensive LVH 0.76 [95% CI, 0.76-0.77], and other LVH 0.69 [95% CI 0.68-0.71]. The single-lead models also discriminated LVH etiologies well.</p></div><div><h3>Conclusion</h3><p>An artificial intelligence–enabled ECG model is favorable for detection and classification of LVH and outperforms clinical ECG-based rules.</p></div>\",\"PeriodicalId\":72527,\"journal\":{\"name\":\"Cardiovascular digital health journal\",\"volume\":\"4 2\",\"pages\":\"Pages 48-59\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10123506/pdf/\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cardiovascular digital health journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666693623000208\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiovascular digital health journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666693623000208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 2

摘要

背景区分与左心室肥大(LVH)相关的心脏病有助于诊断和临床护理。目的评估12导联心电图(ECG)的人工智能分析是否有助于LVH的自动检测和分类。方法我们使用预训练的卷积神经网络来推导多机构医疗系统中患有与LVH相关的心脏病的患者(n=50709)的12导联心电图波形的数字表示,包括心脏淀粉样变性(n=304)、肥厚性心肌病(n=1056)、高血压(n=20802)、主动脉狭窄(n=446)和其他原因(n=4766)。然后,我们使用逻辑回归(“LVH-Net”)对年龄、性别和数字12导联表示的LVH病因相对于无LVH进行了回归。为了评估深度学习模型在类似于移动心电图的单导联数据上的性能,我们还通过对12导联心电图的导联I(“LVH Net导联I”)或导联II(“LVH-Net导联II”)上的模型进行训练,开发了2个单导联深度学习模型。我们将LVH-Net模型的性能与其他模型进行了比较,这些模型符合(1)年龄、性别和标准心电图测量,以及(2)诊断LVH的基于临床心电图的规则。结果LVH-Net的受试者特征曲线下特定LVH病因的区域为心脏淀粉样变性0.95[95%CI,0.93–0.97]、肥厚性心肌病0.92[95%CI,0.90–0.94],主动脉狭窄LVH 0.90[95%CI,0.88-0.92]、高血压LVH 0.76[95%CI、0.76-0.77]和其他LVH 0.69[95%CI 0.68-0.71]。单导联模型也很好地区分了LVH的病因。结论人工智能心电图模型有利于LVH的检测和分类,优于基于临床心电图的规则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Artificial intelligence–enabled classification of hypertrophic heart diseases using electrocardiograms

Background

Differentiating among cardiac diseases associated with left ventricular hypertrophy (LVH) informs diagnosis and clinical care.

Objective

To evaluate if artificial intelligence–enabled analysis of the 12-lead electrocardiogram (ECG) facilitates automated detection and classification of LVH.

Methods

We used a pretrained convolutional neural network to derive numerical representations of 12-lead ECG waveforms from patients in a multi-institutional healthcare system who had cardiac diseases associated with LVH (n = 50,709), including cardiac amyloidosis (n = 304), hypertrophic cardiomyopathy (n = 1056), hypertension (n = 20,802), aortic stenosis (n = 446), and other causes (n = 4766). We then regressed LVH etiologies relative to no LVH on age, sex, and the numerical 12-lead representations using logistic regression (“LVH-Net”). To assess deep learning model performance on single-lead data analogous to mobile ECGs, we also developed 2 single-lead deep learning models by training models on lead I (“LVH-Net Lead I”) or lead II (“LVH-Net Lead II”) from the 12-lead ECG. We compared the performance of the LVH-Net models to alternative models fit on (1) age, sex, and standard ECG measures, and (2) clinical ECG-based rules for diagnosing LVH.

Results

The areas under the receiver operator characteristic curve of LVH-Net by specific LVH etiology were cardiac amyloidosis 0.95 [95% CI, 0.93–0.97], hypertrophic cardiomyopathy 0.92 [95% CI, 0.90–0.94], aortic stenosis LVH 0.90 [95% CI, 0.88-0.92], hypertensive LVH 0.76 [95% CI, 0.76-0.77], and other LVH 0.69 [95% CI 0.68-0.71]. The single-lead models also discriminated LVH etiologies well.

Conclusion

An artificial intelligence–enabled ECG model is favorable for detection and classification of LVH and outperforms clinical ECG-based rules.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cardiovascular digital health journal
Cardiovascular digital health journal Cardiology and Cardiovascular Medicine
CiteScore
4.20
自引率
0.00%
发文量
0
审稿时长
58 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信