bsamzout矩阵的子结果

Pub Date : 2000-12-01 DOI:10.1142/9789812791962_0003
Xiaorong Hou, Dongming Wang
{"title":"bsamzout矩阵的子结果","authors":"Xiaorong Hou, Dongming Wang","doi":"10.1142/9789812791962_0003","DOIUrl":null,"url":null,"abstract":"Subresultants are defined usually by means of subdeterminants of the Sylvester matrix. This paper gives an explicit and simple representation of the subresultants in terms of subdeterminants of the Bezout matrix and thus provides an alternative definition for subresultants. The representation and the lower dimensionality of the Bezout matrix lead to an effective technique for computing subresultant chains using determinant evaluation. Our preliminary experiments show that this technique is computationally superior to the standard technique based on pseudo-division for certain classes of polynomials.","PeriodicalId":0,"journal":{"name":"","volume":" ","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2000-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Subresultants with the Bézout Matrix\",\"authors\":\"Xiaorong Hou, Dongming Wang\",\"doi\":\"10.1142/9789812791962_0003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Subresultants are defined usually by means of subdeterminants of the Sylvester matrix. This paper gives an explicit and simple representation of the subresultants in terms of subdeterminants of the Bezout matrix and thus provides an alternative definition for subresultants. The representation and the lower dimensionality of the Bezout matrix lead to an effective technique for computing subresultant chains using determinant evaluation. Our preliminary experiments show that this technique is computationally superior to the standard technique based on pseudo-division for certain classes of polynomials.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":\" \",\"pages\":\"0\"},\"PeriodicalIF\":0.0,\"publicationDate\":\"2000-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/9789812791962_0003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/9789812791962_0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

子结果通常由Sylvester矩阵的子行列式来定义。本文给出了用Bezout矩阵的子行列式表示子结果的一个显式和简单的表示,从而提供了子结果的另一种定义。Bezout矩阵的表示和较低的维数导致了一种利用行列式求值计算子结果链的有效技术。我们的初步实验表明,对于某些类型的多项式,该技术在计算上优于基于伪除法的标准技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Subresultants with the Bézout Matrix
Subresultants are defined usually by means of subdeterminants of the Sylvester matrix. This paper gives an explicit and simple representation of the subresultants in terms of subdeterminants of the Bezout matrix and thus provides an alternative definition for subresultants. The representation and the lower dimensionality of the Bezout matrix lead to an effective technique for computing subresultant chains using determinant evaluation. Our preliminary experiments show that this technique is computationally superior to the standard technique based on pseudo-division for certain classes of polynomials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信