Daniel Park, Jesus Izaguirre, Rory Coffey and Huafeng Xu*,
{"title":"异双功能降解物介导的三元配合物形成和靶向蛋白质降解的协同效应建模","authors":"Daniel Park, Jesus Izaguirre, Rory Coffey and Huafeng Xu*, ","doi":"10.1021/acsbiomedchemau.2c00037","DOIUrl":null,"url":null,"abstract":"<p >Chemically induced proximity between certain endogenous enzymes and a protein of interest (POI) inside cells may cause post-translational modifications to the POI with biological consequences and potential therapeutic effects. Heterobifunctional (HBF) molecules that bind with one functional part to a target POI and with the other to an E3 ligase induce the formation of a target-HBF-E3 ternary complex, which can lead to ubiquitination and proteasomal degradation of the POI. Targeted protein degradation (TPD) by HBFs offers a promising approach to modulate disease-associated proteins, especially those that are intractable using other therapeutic approaches, such as enzymatic inhibition. The three-way interactions among the HBF, the target POI, and the ligase─including the protein–protein interaction between the POI and the ligase─contribute to the stability of the ternary complex, manifested as positive or negative binding cooperativity in its formation. How such cooperativity affects HBF-mediated degradation is an open question. In this work, we develop a pharmacodynamic model that describes the kinetics of the key reactions in the TPD process, and we use this model to investigate the role of cooperativity in the ternary complex formation and in the target POI degradation. Our model establishes the quantitative connection between the ternary complex stability and the degradation efficiency through the former’s effect on the rate of catalytic turnover. We also develop a statistical inference model for determining cooperativity in intracellular ternary complex formation from cellular assay data and demonstrate it by quantifying the change in cooperativity due to site-directed mutagenesis at the POI-ligase interface of the SMARCA2-ACBI1-VHL ternary complex. Our pharmacodynamic model provides a quantitative framework to dissect the complex HBF-mediated TPD process and may inform the rational design of effective HBF degraders.</p>","PeriodicalId":29802,"journal":{"name":"ACS Bio & Med Chem Au","volume":"3 1","pages":"74–86"},"PeriodicalIF":3.8000,"publicationDate":"2022-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/63/44/bg2c00037.PMC10125322.pdf","citationCount":"0","resultStr":"{\"title\":\"Modeling the Effect of Cooperativity in Ternary Complex Formation and Targeted Protein Degradation Mediated by Heterobifunctional Degraders\",\"authors\":\"Daniel Park, Jesus Izaguirre, Rory Coffey and Huafeng Xu*, \",\"doi\":\"10.1021/acsbiomedchemau.2c00037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Chemically induced proximity between certain endogenous enzymes and a protein of interest (POI) inside cells may cause post-translational modifications to the POI with biological consequences and potential therapeutic effects. Heterobifunctional (HBF) molecules that bind with one functional part to a target POI and with the other to an E3 ligase induce the formation of a target-HBF-E3 ternary complex, which can lead to ubiquitination and proteasomal degradation of the POI. Targeted protein degradation (TPD) by HBFs offers a promising approach to modulate disease-associated proteins, especially those that are intractable using other therapeutic approaches, such as enzymatic inhibition. The three-way interactions among the HBF, the target POI, and the ligase─including the protein–protein interaction between the POI and the ligase─contribute to the stability of the ternary complex, manifested as positive or negative binding cooperativity in its formation. How such cooperativity affects HBF-mediated degradation is an open question. In this work, we develop a pharmacodynamic model that describes the kinetics of the key reactions in the TPD process, and we use this model to investigate the role of cooperativity in the ternary complex formation and in the target POI degradation. Our model establishes the quantitative connection between the ternary complex stability and the degradation efficiency through the former’s effect on the rate of catalytic turnover. We also develop a statistical inference model for determining cooperativity in intracellular ternary complex formation from cellular assay data and demonstrate it by quantifying the change in cooperativity due to site-directed mutagenesis at the POI-ligase interface of the SMARCA2-ACBI1-VHL ternary complex. Our pharmacodynamic model provides a quantitative framework to dissect the complex HBF-mediated TPD process and may inform the rational design of effective HBF degraders.</p>\",\"PeriodicalId\":29802,\"journal\":{\"name\":\"ACS Bio & Med Chem Au\",\"volume\":\"3 1\",\"pages\":\"74–86\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2022-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/63/44/bg2c00037.PMC10125322.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Bio & Med Chem Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsbiomedchemau.2c00037\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Bio & Med Chem Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsbiomedchemau.2c00037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Modeling the Effect of Cooperativity in Ternary Complex Formation and Targeted Protein Degradation Mediated by Heterobifunctional Degraders
Chemically induced proximity between certain endogenous enzymes and a protein of interest (POI) inside cells may cause post-translational modifications to the POI with biological consequences and potential therapeutic effects. Heterobifunctional (HBF) molecules that bind with one functional part to a target POI and with the other to an E3 ligase induce the formation of a target-HBF-E3 ternary complex, which can lead to ubiquitination and proteasomal degradation of the POI. Targeted protein degradation (TPD) by HBFs offers a promising approach to modulate disease-associated proteins, especially those that are intractable using other therapeutic approaches, such as enzymatic inhibition. The three-way interactions among the HBF, the target POI, and the ligase─including the protein–protein interaction between the POI and the ligase─contribute to the stability of the ternary complex, manifested as positive or negative binding cooperativity in its formation. How such cooperativity affects HBF-mediated degradation is an open question. In this work, we develop a pharmacodynamic model that describes the kinetics of the key reactions in the TPD process, and we use this model to investigate the role of cooperativity in the ternary complex formation and in the target POI degradation. Our model establishes the quantitative connection between the ternary complex stability and the degradation efficiency through the former’s effect on the rate of catalytic turnover. We also develop a statistical inference model for determining cooperativity in intracellular ternary complex formation from cellular assay data and demonstrate it by quantifying the change in cooperativity due to site-directed mutagenesis at the POI-ligase interface of the SMARCA2-ACBI1-VHL ternary complex. Our pharmacodynamic model provides a quantitative framework to dissect the complex HBF-mediated TPD process and may inform the rational design of effective HBF degraders.
期刊介绍:
ACS Bio & Med Chem Au is a broad scope open access journal which publishes short letters comprehensive articles reviews and perspectives in all aspects of biological and medicinal chemistry. Studies providing fundamental insights or describing novel syntheses as well as clinical or other applications-based work are welcomed.This broad scope includes experimental and theoretical studies on the chemical physical mechanistic and/or structural basis of biological or cell function in all domains of life. It encompasses the fields of chemical biology synthetic biology disease biology cell biology agriculture and food natural products research nucleic acid biology neuroscience structural biology and biophysics.The journal publishes studies that pertain to a broad range of medicinal chemistry including compound design and optimization biological evaluation molecular mechanistic understanding of drug delivery and drug delivery systems imaging agents and pharmacology and translational science of both small and large bioactive molecules. Novel computational cheminformatics and structural studies for the identification (or structure-activity relationship analysis) of bioactive molecules ligands and their targets are also welcome. The journal will consider computational studies applying established computational methods but only in combination with novel and original experimental data (e.g. in cases where new compounds have been designed and tested).Also included in the scope of the journal are articles relating to infectious diseases research on pathogens host-pathogen interactions therapeutics diagnostics vaccines drug-delivery systems and other biomedical technology development pertaining to infectious diseases.