{"title":"微型蛋白的设计与工程","authors":"Katarzyna Ożga, and , Łukasz Berlicki*, ","doi":"10.1021/acsbiomedchemau.2c00008","DOIUrl":null,"url":null,"abstract":"<p >The potential of miniproteins in the biological and chemical sciences is constantly increasing. Significant progress in the design methodologies has been achieved over the last 30 years. Early approaches based on propensities of individual amino acid residues to form individual secondary structures were subsequently improved by structural analyses using NMR spectroscopy and crystallography. Consequently, computational algorithms were developed, which are now highly successful in designing structures with accuracy often close to atomic range. Further perspectives include construction of miniproteins incorporating non-native secondary structures derived from sequences with units other than α-amino acids. Noteworthy, miniproteins with extended structures, which are now feasibly accessible, are excellent scaffolds for construction of functional molecules.</p>","PeriodicalId":29802,"journal":{"name":"ACS Bio & Med Chem Au","volume":"2 4","pages":"316–327"},"PeriodicalIF":3.8000,"publicationDate":"2022-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10125317/pdf/","citationCount":"2","resultStr":"{\"title\":\"Design and Engineering of Miniproteins\",\"authors\":\"Katarzyna Ożga, and , Łukasz Berlicki*, \",\"doi\":\"10.1021/acsbiomedchemau.2c00008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The potential of miniproteins in the biological and chemical sciences is constantly increasing. Significant progress in the design methodologies has been achieved over the last 30 years. Early approaches based on propensities of individual amino acid residues to form individual secondary structures were subsequently improved by structural analyses using NMR spectroscopy and crystallography. Consequently, computational algorithms were developed, which are now highly successful in designing structures with accuracy often close to atomic range. Further perspectives include construction of miniproteins incorporating non-native secondary structures derived from sequences with units other than α-amino acids. Noteworthy, miniproteins with extended structures, which are now feasibly accessible, are excellent scaffolds for construction of functional molecules.</p>\",\"PeriodicalId\":29802,\"journal\":{\"name\":\"ACS Bio & Med Chem Au\",\"volume\":\"2 4\",\"pages\":\"316–327\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2022-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10125317/pdf/\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Bio & Med Chem Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsbiomedchemau.2c00008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Bio & Med Chem Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsbiomedchemau.2c00008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
The potential of miniproteins in the biological and chemical sciences is constantly increasing. Significant progress in the design methodologies has been achieved over the last 30 years. Early approaches based on propensities of individual amino acid residues to form individual secondary structures were subsequently improved by structural analyses using NMR spectroscopy and crystallography. Consequently, computational algorithms were developed, which are now highly successful in designing structures with accuracy often close to atomic range. Further perspectives include construction of miniproteins incorporating non-native secondary structures derived from sequences with units other than α-amino acids. Noteworthy, miniproteins with extended structures, which are now feasibly accessible, are excellent scaffolds for construction of functional molecules.
期刊介绍:
ACS Bio & Med Chem Au is a broad scope open access journal which publishes short letters comprehensive articles reviews and perspectives in all aspects of biological and medicinal chemistry. Studies providing fundamental insights or describing novel syntheses as well as clinical or other applications-based work are welcomed.This broad scope includes experimental and theoretical studies on the chemical physical mechanistic and/or structural basis of biological or cell function in all domains of life. It encompasses the fields of chemical biology synthetic biology disease biology cell biology agriculture and food natural products research nucleic acid biology neuroscience structural biology and biophysics.The journal publishes studies that pertain to a broad range of medicinal chemistry including compound design and optimization biological evaluation molecular mechanistic understanding of drug delivery and drug delivery systems imaging agents and pharmacology and translational science of both small and large bioactive molecules. Novel computational cheminformatics and structural studies for the identification (or structure-activity relationship analysis) of bioactive molecules ligands and their targets are also welcome. The journal will consider computational studies applying established computational methods but only in combination with novel and original experimental data (e.g. in cases where new compounds have been designed and tested).Also included in the scope of the journal are articles relating to infectious diseases research on pathogens host-pathogen interactions therapeutics diagnostics vaccines drug-delivery systems and other biomedical technology development pertaining to infectious diseases.