膜重塑引发了三维人类诱导多能干细胞衍生心肌细胞中兴奋-收缩耦合的成熟。

IF 7.5 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS
Fatemeh Kermani, Matias Mosqueira, Kyra Peters, Enrico D Lemma, Kleopatra Rapti, Dirk Grimm, Martin Bastmeyer, Magdalena Laugsch, Markus Hecker, Nina D Ullrich
{"title":"膜重塑引发了三维人类诱导多能干细胞衍生心肌细胞中兴奋-收缩耦合的成熟。","authors":"Fatemeh Kermani, Matias Mosqueira, Kyra Peters, Enrico D Lemma, Kleopatra Rapti, Dirk Grimm, Martin Bastmeyer, Magdalena Laugsch, Markus Hecker, Nina D Ullrich","doi":"10.1007/s00395-023-00984-5","DOIUrl":null,"url":null,"abstract":"<p><p>The prospective use of human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) for cardiac regenerative medicine strongly depends on the electro-mechanical properties of these cells, especially regarding the Ca<sup>2+</sup>-dependent excitation-contraction (EC) coupling mechanism. Currently, the immature structural and functional features of hiPSC-CM limit the progression towards clinical applications. Here, we show that a specific microarchitecture is essential for functional maturation of hiPSC-CM. Structural remodelling towards a cuboid cell shape and induction of BIN1, a facilitator of membrane invaginations, lead to transverse (t)-tubule-like structures. This transformation brings two Ca<sup>2+</sup> channels critical for EC coupling in close proximity, the L-type Ca<sup>2+</sup> channel at the sarcolemma and the ryanodine receptor at the sarcoplasmic reticulum. Consequently, the Ca<sup>2+</sup>-dependent functional interaction of these channels becomes more efficient, leading to improved spatio-temporal synchronisation of Ca<sup>2+</sup> transients and higher EC coupling gain. Thus, functional maturation of hiPSC-cardiomyocytes by optimised cell microarchitecture needs to be considered for future cardiac regenerative approaches.</p>","PeriodicalId":8723,"journal":{"name":"Basic Research in Cardiology","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2023-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10060306/pdf/","citationCount":"0","resultStr":"{\"title\":\"Membrane remodelling triggers maturation of excitation-contraction coupling in 3D-shaped human-induced pluripotent stem cell-derived cardiomyocytes.\",\"authors\":\"Fatemeh Kermani, Matias Mosqueira, Kyra Peters, Enrico D Lemma, Kleopatra Rapti, Dirk Grimm, Martin Bastmeyer, Magdalena Laugsch, Markus Hecker, Nina D Ullrich\",\"doi\":\"10.1007/s00395-023-00984-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The prospective use of human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) for cardiac regenerative medicine strongly depends on the electro-mechanical properties of these cells, especially regarding the Ca<sup>2+</sup>-dependent excitation-contraction (EC) coupling mechanism. Currently, the immature structural and functional features of hiPSC-CM limit the progression towards clinical applications. Here, we show that a specific microarchitecture is essential for functional maturation of hiPSC-CM. Structural remodelling towards a cuboid cell shape and induction of BIN1, a facilitator of membrane invaginations, lead to transverse (t)-tubule-like structures. This transformation brings two Ca<sup>2+</sup> channels critical for EC coupling in close proximity, the L-type Ca<sup>2+</sup> channel at the sarcolemma and the ryanodine receptor at the sarcoplasmic reticulum. Consequently, the Ca<sup>2+</sup>-dependent functional interaction of these channels becomes more efficient, leading to improved spatio-temporal synchronisation of Ca<sup>2+</sup> transients and higher EC coupling gain. Thus, functional maturation of hiPSC-cardiomyocytes by optimised cell microarchitecture needs to be considered for future cardiac regenerative approaches.</p>\",\"PeriodicalId\":8723,\"journal\":{\"name\":\"Basic Research in Cardiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2023-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10060306/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Basic Research in Cardiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00395-023-00984-5\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Basic Research in Cardiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00395-023-00984-5","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

人类诱导多能干细胞衍生的心肌细胞(hiPSC-CM)能否用于心脏再生医学,在很大程度上取决于这些细胞的电子机械性能,尤其是Ca2+依赖性兴奋-收缩(EC)耦合机制。目前,hiPSC-CM 不成熟的结构和功能特征限制了其临床应用的进展。在这里,我们证明了特定的微结构对 hiPSC-CM 的功能成熟至关重要。长方体细胞形状的结构重塑和膜内陷促进因子 BIN1 的诱导导致了横向(t)管状结构的形成。这种转变使两个对心肌耦合至关重要的 Ca2+ 通道(肌浆膜上的 L 型 Ca2+ 通道和肌质网上的雷诺丁受体)靠近。因此,这些通道依赖 Ca2+ 的功能性相互作用变得更加有效,从而改善了 Ca2+ 瞬时的时空同步性,提高了心肌耦合增益。因此,未来的心脏再生方法需要考虑通过优化细胞微结构来实现 hiPSC 心肌细胞的功能成熟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Membrane remodelling triggers maturation of excitation-contraction coupling in 3D-shaped human-induced pluripotent stem cell-derived cardiomyocytes.

Membrane remodelling triggers maturation of excitation-contraction coupling in 3D-shaped human-induced pluripotent stem cell-derived cardiomyocytes.

Membrane remodelling triggers maturation of excitation-contraction coupling in 3D-shaped human-induced pluripotent stem cell-derived cardiomyocytes.

Membrane remodelling triggers maturation of excitation-contraction coupling in 3D-shaped human-induced pluripotent stem cell-derived cardiomyocytes.

The prospective use of human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) for cardiac regenerative medicine strongly depends on the electro-mechanical properties of these cells, especially regarding the Ca2+-dependent excitation-contraction (EC) coupling mechanism. Currently, the immature structural and functional features of hiPSC-CM limit the progression towards clinical applications. Here, we show that a specific microarchitecture is essential for functional maturation of hiPSC-CM. Structural remodelling towards a cuboid cell shape and induction of BIN1, a facilitator of membrane invaginations, lead to transverse (t)-tubule-like structures. This transformation brings two Ca2+ channels critical for EC coupling in close proximity, the L-type Ca2+ channel at the sarcolemma and the ryanodine receptor at the sarcoplasmic reticulum. Consequently, the Ca2+-dependent functional interaction of these channels becomes more efficient, leading to improved spatio-temporal synchronisation of Ca2+ transients and higher EC coupling gain. Thus, functional maturation of hiPSC-cardiomyocytes by optimised cell microarchitecture needs to be considered for future cardiac regenerative approaches.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Basic Research in Cardiology
Basic Research in Cardiology 医学-心血管系统
CiteScore
16.30
自引率
5.30%
发文量
54
审稿时长
6-12 weeks
期刊介绍: Basic Research in Cardiology is an international journal for cardiovascular research. It provides a forum for original and review articles related to experimental cardiology that meet its stringent scientific standards. Basic Research in Cardiology regularly receives articles from the fields of - Molecular and Cellular Biology - Biochemistry - Biophysics - Pharmacology - Physiology and Pathology - Clinical Cardiology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信