Ming-Yen Ng, Chi Ting Kwan, Pui Min Yap, Sau Yung Fung, Hok Shing Tang, Wan Wai Vivian Tse, Cheuk Nam Felix Kwan, Yin Hay Phoebe Chow, Nga Ching Yiu, Yung Pok Lee, Ambrose Ho Tung Fong, Subin Hwang, Zachary Fai Wang Fong, Qing-Wen Ren, Mei-Zhen Wu, Eric Yuk Fai Wan, Ka Chun Kevin Lee, Chun Yu Leung, Andrew Li, David Montero, Varut Vardhanabhuti, JoJo Hai, Chung-Wah Siu, Hung-Fat Tse, Dudley John Pennell, Raad Mohiaddin, Roxy Senior, Kai-Hang Yiu
{"title":"心血管磁共振应变分析和心房大小对保留射血分数的心力衰竭的诊断准确性。","authors":"Ming-Yen Ng, Chi Ting Kwan, Pui Min Yap, Sau Yung Fung, Hok Shing Tang, Wan Wai Vivian Tse, Cheuk Nam Felix Kwan, Yin Hay Phoebe Chow, Nga Ching Yiu, Yung Pok Lee, Ambrose Ho Tung Fong, Subin Hwang, Zachary Fai Wang Fong, Qing-Wen Ren, Mei-Zhen Wu, Eric Yuk Fai Wan, Ka Chun Kevin Lee, Chun Yu Leung, Andrew Li, David Montero, Varut Vardhanabhuti, JoJo Hai, Chung-Wah Siu, Hung-Fat Tse, Dudley John Pennell, Raad Mohiaddin, Roxy Senior, Kai-Hang Yiu","doi":"10.1093/ehjopen/oead021","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>Heart failure with preserved ejection fraction (HFpEF) continues to be a diagnostic challenge. Cardiac magnetic resonance atrial measurement, feature tracking (CMR-FT), tagging has long been suggested to diagnose HFpEF and potentially complement echocardiography especially when echocardiography is indeterminate. Data supporting the use of CMR atrial measurements, CMR-FT or tagging, are absent. Our aim is to conduct a prospective case-control study assessing the diagnostic accuracy of CMR atrial volume/area, CMR-FT, and tagging to diagnose HFpEF amongst patients suspected of having HFpEF.</p><p><strong>Methods and results: </strong>One hundred and twenty-one suspected HFpEF patients were prospectively recruited from four centres. Patients underwent echocardiography, CMR, and N-terminal pro-B-type natriuretic peptide (NT-proBNP) measurements within 24 h to diagnose HFpEF. Patients without HFpEF diagnosis underwent catheter pressure measurements or stress echocardiography to confirm HFpEF or non-HFpEF. Area under the curve (AUC) was determined by comparing HFpEF with non-HFpEF patients. Fifty-three HFpEF (median age 78 years, interquartile range 74-82 years) and thirty-eight non-HFpEF (median age 70 years, interquartile range 64-76 years) were recruited. Cardiac magnetic resonance left atrial (LA) reservoir strain (ResS), LA area index (LAAi), and LA volume index (LAVi) had the highest diagnostic accuracy (AUCs 0.803, 0.815, and 0.776, respectively). Left atrial ResS, LAAi, and LAVi had significantly better diagnostic accuracy than CMR-FT left ventricle (LV)/right ventricle (RV) parameters and tagging (<i>P</i> < 0.01). Tagging circumferential and radial strain had poor diagnostic accuracy (AUC 0.644 and 0.541, respectively).</p><p><strong>Conclusion: </strong>Cardiac magnetic resonance LA ResS, LAAi, and LAVi have the highest diagnostic accuracy to identify HFpEF patients from non-HFpEF patients amongst clinically suspected HFpEF patients. Cardiac magnetic resonance feature tracking LV/RV parameters and tagging had low diagnostic accuracy to diagnose HFpEF.</p>","PeriodicalId":11973,"journal":{"name":"European Heart Journal Open","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/d8/85/oead021.PMC10041670.pdf","citationCount":"3","resultStr":"{\"title\":\"Diagnostic accuracy of cardiovascular magnetic resonance strain analysis and atrial size to identify heart failure with preserved ejection fraction.\",\"authors\":\"Ming-Yen Ng, Chi Ting Kwan, Pui Min Yap, Sau Yung Fung, Hok Shing Tang, Wan Wai Vivian Tse, Cheuk Nam Felix Kwan, Yin Hay Phoebe Chow, Nga Ching Yiu, Yung Pok Lee, Ambrose Ho Tung Fong, Subin Hwang, Zachary Fai Wang Fong, Qing-Wen Ren, Mei-Zhen Wu, Eric Yuk Fai Wan, Ka Chun Kevin Lee, Chun Yu Leung, Andrew Li, David Montero, Varut Vardhanabhuti, JoJo Hai, Chung-Wah Siu, Hung-Fat Tse, Dudley John Pennell, Raad Mohiaddin, Roxy Senior, Kai-Hang Yiu\",\"doi\":\"10.1093/ehjopen/oead021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Aims: </strong>Heart failure with preserved ejection fraction (HFpEF) continues to be a diagnostic challenge. Cardiac magnetic resonance atrial measurement, feature tracking (CMR-FT), tagging has long been suggested to diagnose HFpEF and potentially complement echocardiography especially when echocardiography is indeterminate. Data supporting the use of CMR atrial measurements, CMR-FT or tagging, are absent. Our aim is to conduct a prospective case-control study assessing the diagnostic accuracy of CMR atrial volume/area, CMR-FT, and tagging to diagnose HFpEF amongst patients suspected of having HFpEF.</p><p><strong>Methods and results: </strong>One hundred and twenty-one suspected HFpEF patients were prospectively recruited from four centres. Patients underwent echocardiography, CMR, and N-terminal pro-B-type natriuretic peptide (NT-proBNP) measurements within 24 h to diagnose HFpEF. Patients without HFpEF diagnosis underwent catheter pressure measurements or stress echocardiography to confirm HFpEF or non-HFpEF. Area under the curve (AUC) was determined by comparing HFpEF with non-HFpEF patients. Fifty-three HFpEF (median age 78 years, interquartile range 74-82 years) and thirty-eight non-HFpEF (median age 70 years, interquartile range 64-76 years) were recruited. Cardiac magnetic resonance left atrial (LA) reservoir strain (ResS), LA area index (LAAi), and LA volume index (LAVi) had the highest diagnostic accuracy (AUCs 0.803, 0.815, and 0.776, respectively). Left atrial ResS, LAAi, and LAVi had significantly better diagnostic accuracy than CMR-FT left ventricle (LV)/right ventricle (RV) parameters and tagging (<i>P</i> < 0.01). Tagging circumferential and radial strain had poor diagnostic accuracy (AUC 0.644 and 0.541, respectively).</p><p><strong>Conclusion: </strong>Cardiac magnetic resonance LA ResS, LAAi, and LAVi have the highest diagnostic accuracy to identify HFpEF patients from non-HFpEF patients amongst clinically suspected HFpEF patients. Cardiac magnetic resonance feature tracking LV/RV parameters and tagging had low diagnostic accuracy to diagnose HFpEF.</p>\",\"PeriodicalId\":11973,\"journal\":{\"name\":\"European Heart Journal Open\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/d8/85/oead021.PMC10041670.pdf\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Heart Journal Open\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/ehjopen/oead021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Heart Journal Open","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ehjopen/oead021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Diagnostic accuracy of cardiovascular magnetic resonance strain analysis and atrial size to identify heart failure with preserved ejection fraction.
Aims: Heart failure with preserved ejection fraction (HFpEF) continues to be a diagnostic challenge. Cardiac magnetic resonance atrial measurement, feature tracking (CMR-FT), tagging has long been suggested to diagnose HFpEF and potentially complement echocardiography especially when echocardiography is indeterminate. Data supporting the use of CMR atrial measurements, CMR-FT or tagging, are absent. Our aim is to conduct a prospective case-control study assessing the diagnostic accuracy of CMR atrial volume/area, CMR-FT, and tagging to diagnose HFpEF amongst patients suspected of having HFpEF.
Methods and results: One hundred and twenty-one suspected HFpEF patients were prospectively recruited from four centres. Patients underwent echocardiography, CMR, and N-terminal pro-B-type natriuretic peptide (NT-proBNP) measurements within 24 h to diagnose HFpEF. Patients without HFpEF diagnosis underwent catheter pressure measurements or stress echocardiography to confirm HFpEF or non-HFpEF. Area under the curve (AUC) was determined by comparing HFpEF with non-HFpEF patients. Fifty-three HFpEF (median age 78 years, interquartile range 74-82 years) and thirty-eight non-HFpEF (median age 70 years, interquartile range 64-76 years) were recruited. Cardiac magnetic resonance left atrial (LA) reservoir strain (ResS), LA area index (LAAi), and LA volume index (LAVi) had the highest diagnostic accuracy (AUCs 0.803, 0.815, and 0.776, respectively). Left atrial ResS, LAAi, and LAVi had significantly better diagnostic accuracy than CMR-FT left ventricle (LV)/right ventricle (RV) parameters and tagging (P < 0.01). Tagging circumferential and radial strain had poor diagnostic accuracy (AUC 0.644 and 0.541, respectively).
Conclusion: Cardiac magnetic resonance LA ResS, LAAi, and LAVi have the highest diagnostic accuracy to identify HFpEF patients from non-HFpEF patients amongst clinically suspected HFpEF patients. Cardiac magnetic resonance feature tracking LV/RV parameters and tagging had low diagnostic accuracy to diagnose HFpEF.