GeneTuring在基因组学中测试GPT模型。

Xinyi Shang, Xu Liao, Zhicheng Ji, Wenpin Hou
{"title":"GeneTuring在基因组学中测试GPT模型。","authors":"Xinyi Shang, Xu Liao, Zhicheng Ji, Wenpin Hou","doi":"10.1101/2023.03.11.532238","DOIUrl":null,"url":null,"abstract":"<p><p>Large language models (LLMs) show promise in biomedical research, but their effectiveness for genomic inquiry remains unclear. We developed GeneTuring, a benchmark consisting of 16 genomics tasks with 1,600 curated questions, and manually evaluated 48,000 answers from ten LLM configurations, including GPT-4o (via API, ChatGPT with web access, and a custom GPT setup), GPT-3.5, Claude 3.5, Gemini Advanced, GeneGPT (both slim and full), BioGPT, and BioMedLM. A custom GPT-4o configuration integrated with NCBI APIs, developed in this study as SeqSnap, achieved the best overall performance. GPT-4o with web access and GeneGPT demonstrated complementary strengths. Our findings highlight both the promise and current limitations of LLMs in genomics, and emphasize the value of combining LLMs with domain-specific tools for robust genomic intelligence. GeneTuring offers a key resource for benchmarking and improving LLMs in biomedical research.</p><p><strong>Biographical note: </strong>Dr. Wenpin Hou is an Assistant Professor (tenure-track) in the Department of Biostatistics at Columbia University and member of its Data Science Institute, developing AI and statistical methods for decoding gene regulatory programs from single-cell and spatial multiomics data.</p>","PeriodicalId":72407,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/79/09/nihpp-2023.03.11.532238v1.PMC10054955.pdf","citationCount":"0","resultStr":"{\"title\":\"Benchmarking large language models for genomic knowledge with GeneTuring.\",\"authors\":\"Xinyi Shang, Xu Liao, Zhicheng Ji, Wenpin Hou\",\"doi\":\"10.1101/2023.03.11.532238\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Large language models (LLMs) show promise in biomedical research, but their effectiveness for genomic inquiry remains unclear. We developed GeneTuring, a benchmark consisting of 16 genomics tasks with 1,600 curated questions, and manually evaluated 48,000 answers from ten LLM configurations, including GPT-4o (via API, ChatGPT with web access, and a custom GPT setup), GPT-3.5, Claude 3.5, Gemini Advanced, GeneGPT (both slim and full), BioGPT, and BioMedLM. A custom GPT-4o configuration integrated with NCBI APIs, developed in this study as SeqSnap, achieved the best overall performance. GPT-4o with web access and GeneGPT demonstrated complementary strengths. Our findings highlight both the promise and current limitations of LLMs in genomics, and emphasize the value of combining LLMs with domain-specific tools for robust genomic intelligence. GeneTuring offers a key resource for benchmarking and improving LLMs in biomedical research.</p><p><strong>Biographical note: </strong>Dr. Wenpin Hou is an Assistant Professor (tenure-track) in the Department of Biostatistics at Columbia University and member of its Data Science Institute, developing AI and statistical methods for decoding gene regulatory programs from single-cell and spatial multiomics data.</p>\",\"PeriodicalId\":72407,\"journal\":{\"name\":\"bioRxiv : the preprint server for biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/79/09/nihpp-2023.03.11.532238v1.PMC10054955.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv : the preprint server for biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2023.03.11.532238\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2023.03.11.532238","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

生成预训练转换器(GPT)是功能强大的语言模型,在生物医学研究领域具有巨大的潜力。然而,众所周知,他们会产生人为幻觉,并在某些情况下提供看似正确的错误答案。我们开发了GeneTuring,这是一个包含600个基因组学问题的综合QA数据库,并手动为包括GPT-3、ChatGPT和New Bing在内的六个GPT模型返回的10800个答案打分。与其他模型相比,新冰的整体性能最好,并显著降低了人工智能幻觉的水平,这要归功于它能够识别自己在回答问题时的无能。我们认为,提高丧失能力意识与提高模型准确性以解决人工智能幻觉同样重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Benchmarking large language models for genomic knowledge with GeneTuring.

Benchmarking large language models for genomic knowledge with GeneTuring.

Benchmarking large language models for genomic knowledge with GeneTuring.

Large language models (LLMs) show promise in biomedical research, but their effectiveness for genomic inquiry remains unclear. We developed GeneTuring, a benchmark consisting of 16 genomics tasks with 1,600 curated questions, and manually evaluated 48,000 answers from ten LLM configurations, including GPT-4o (via API, ChatGPT with web access, and a custom GPT setup), GPT-3.5, Claude 3.5, Gemini Advanced, GeneGPT (both slim and full), BioGPT, and BioMedLM. A custom GPT-4o configuration integrated with NCBI APIs, developed in this study as SeqSnap, achieved the best overall performance. GPT-4o with web access and GeneGPT demonstrated complementary strengths. Our findings highlight both the promise and current limitations of LLMs in genomics, and emphasize the value of combining LLMs with domain-specific tools for robust genomic intelligence. GeneTuring offers a key resource for benchmarking and improving LLMs in biomedical research.

Biographical note: Dr. Wenpin Hou is an Assistant Professor (tenure-track) in the Department of Biostatistics at Columbia University and member of its Data Science Institute, developing AI and statistical methods for decoding gene regulatory programs from single-cell and spatial multiomics data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信