Joyita Hazra, Anupama Vijayakumar, Nitish R Mahapatra
{"title":"热休克蛋白在心血管疾病中的新作用。","authors":"Joyita Hazra, Anupama Vijayakumar, Nitish R Mahapatra","doi":"10.1016/bs.apcsb.2022.10.008","DOIUrl":null,"url":null,"abstract":"<p><p>Heat Shock Proteins (HSPs) are evolutionarily conserved proteins from prokaryotes to eukaryotes. They are ubiquitous proteins involved in key physiological and cellular pathways (viz. inflammation, immunity and apoptosis). Indeed, the survivability of the cells under various stressful conditions depends on appropriate levels of HSP expression. There is a growing line of evidence for the role of HSPs in regulating cardiovascular diseases (CVDs) (viz. hypertension, atherosclerosis, atrial fibrillation, cardiomyopathy and heart failure). Furthermore, studies indicate that a higher concentration of circulatory HSP antibodies correlate to CVDs; some are even potential markers for CVDs. The multifaceted roles of HSPs in regulating cellular signaling necessitate unraveling their links to pathophysiology of CVDs. This review aims to consolidate our understanding of transcriptional (via multiple transcription factors including HSF-1, NF-κB, CREB and STAT3) and post-transcriptional (via microRNAs including miR-1, miR-21 and miR-24) regulation of HSPs. The cytoprotective nature of HSPs catapults them to the limelight as modulators of cell survival. Yet another attractive prospect is the development of new therapeutic strategies against cardiovascular diseases (from hypertension to heart failure) by targeting the regulation of HSPs. Moreover, this review provides insights into how genetic variation of HSPs can contribute to the manifestation of CVDs. It would also offer a bird's eye view of the evolving role of different HSPs in the modulation and manifestation of cardiovascular disease.</p>","PeriodicalId":7376,"journal":{"name":"Advances in protein chemistry and structural biology","volume":"134 ","pages":"271-306"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Emerging role of heat shock proteins in cardiovascular diseases.\",\"authors\":\"Joyita Hazra, Anupama Vijayakumar, Nitish R Mahapatra\",\"doi\":\"10.1016/bs.apcsb.2022.10.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Heat Shock Proteins (HSPs) are evolutionarily conserved proteins from prokaryotes to eukaryotes. They are ubiquitous proteins involved in key physiological and cellular pathways (viz. inflammation, immunity and apoptosis). Indeed, the survivability of the cells under various stressful conditions depends on appropriate levels of HSP expression. There is a growing line of evidence for the role of HSPs in regulating cardiovascular diseases (CVDs) (viz. hypertension, atherosclerosis, atrial fibrillation, cardiomyopathy and heart failure). Furthermore, studies indicate that a higher concentration of circulatory HSP antibodies correlate to CVDs; some are even potential markers for CVDs. The multifaceted roles of HSPs in regulating cellular signaling necessitate unraveling their links to pathophysiology of CVDs. This review aims to consolidate our understanding of transcriptional (via multiple transcription factors including HSF-1, NF-κB, CREB and STAT3) and post-transcriptional (via microRNAs including miR-1, miR-21 and miR-24) regulation of HSPs. The cytoprotective nature of HSPs catapults them to the limelight as modulators of cell survival. Yet another attractive prospect is the development of new therapeutic strategies against cardiovascular diseases (from hypertension to heart failure) by targeting the regulation of HSPs. Moreover, this review provides insights into how genetic variation of HSPs can contribute to the manifestation of CVDs. It would also offer a bird's eye view of the evolving role of different HSPs in the modulation and manifestation of cardiovascular disease.</p>\",\"PeriodicalId\":7376,\"journal\":{\"name\":\"Advances in protein chemistry and structural biology\",\"volume\":\"134 \",\"pages\":\"271-306\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in protein chemistry and structural biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/bs.apcsb.2022.10.008\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in protein chemistry and structural biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.apcsb.2022.10.008","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Emerging role of heat shock proteins in cardiovascular diseases.
Heat Shock Proteins (HSPs) are evolutionarily conserved proteins from prokaryotes to eukaryotes. They are ubiquitous proteins involved in key physiological and cellular pathways (viz. inflammation, immunity and apoptosis). Indeed, the survivability of the cells under various stressful conditions depends on appropriate levels of HSP expression. There is a growing line of evidence for the role of HSPs in regulating cardiovascular diseases (CVDs) (viz. hypertension, atherosclerosis, atrial fibrillation, cardiomyopathy and heart failure). Furthermore, studies indicate that a higher concentration of circulatory HSP antibodies correlate to CVDs; some are even potential markers for CVDs. The multifaceted roles of HSPs in regulating cellular signaling necessitate unraveling their links to pathophysiology of CVDs. This review aims to consolidate our understanding of transcriptional (via multiple transcription factors including HSF-1, NF-κB, CREB and STAT3) and post-transcriptional (via microRNAs including miR-1, miR-21 and miR-24) regulation of HSPs. The cytoprotective nature of HSPs catapults them to the limelight as modulators of cell survival. Yet another attractive prospect is the development of new therapeutic strategies against cardiovascular diseases (from hypertension to heart failure) by targeting the regulation of HSPs. Moreover, this review provides insights into how genetic variation of HSPs can contribute to the manifestation of CVDs. It would also offer a bird's eye view of the evolving role of different HSPs in the modulation and manifestation of cardiovascular disease.
期刊介绍:
Published continuously since 1944, The Advances in Protein Chemistry and Structural Biology series has been the essential resource for protein chemists. Each volume brings forth new information about protocols and analysis of proteins. Each thematically organized volume is guest edited by leading experts in a broad range of protein-related topics.