{"title":"芳基烷基胺n -乙酰转移酶的功能、结构、进化和调控。","authors":"Lei Zhang, Yu Tang, David J Merkler, Qian Han","doi":"10.1016/bs.apcsb.2022.11.002","DOIUrl":null,"url":null,"abstract":"<p><p>Arylalkylamine N-acetyltransferase (aaNAT) catalyzes the transacetylation of acetyl coenzyme A to arylamines and arylalkylamines. Based on three-dimensional structural information, aaNAT belongs to the GCN5-related N-acetyltransferases superfamily with a conserved acetyl-CoA binding domain (Dyda et al., 2000). By comparison of sequence similarity, aaNAT is usually divided into vertebrate aaNAT (VT-aaNAT) and non-vertebrate aaNAT (NV-aaNAT) (Cazaméa-Catalan et al., 2014). Insects have evolved multiple aaNATs in comparison to mammals, thus more diverse functions are also reflected in insects. This chapter will summarize previous studies on the function, regulation, structure and evolution of aaNAT, and provide insight into future pest management.</p>","PeriodicalId":7376,"journal":{"name":"Advances in protein chemistry and structural biology","volume":"134 ","pages":"211-223"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Function, structure, evolution, regulation of a potent drug target, arylalkylamine N-acetyltransferase.\",\"authors\":\"Lei Zhang, Yu Tang, David J Merkler, Qian Han\",\"doi\":\"10.1016/bs.apcsb.2022.11.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Arylalkylamine N-acetyltransferase (aaNAT) catalyzes the transacetylation of acetyl coenzyme A to arylamines and arylalkylamines. Based on three-dimensional structural information, aaNAT belongs to the GCN5-related N-acetyltransferases superfamily with a conserved acetyl-CoA binding domain (Dyda et al., 2000). By comparison of sequence similarity, aaNAT is usually divided into vertebrate aaNAT (VT-aaNAT) and non-vertebrate aaNAT (NV-aaNAT) (Cazaméa-Catalan et al., 2014). Insects have evolved multiple aaNATs in comparison to mammals, thus more diverse functions are also reflected in insects. This chapter will summarize previous studies on the function, regulation, structure and evolution of aaNAT, and provide insight into future pest management.</p>\",\"PeriodicalId\":7376,\"journal\":{\"name\":\"Advances in protein chemistry and structural biology\",\"volume\":\"134 \",\"pages\":\"211-223\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in protein chemistry and structural biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/bs.apcsb.2022.11.002\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in protein chemistry and structural biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.apcsb.2022.11.002","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
摘要
芳基烷基胺n -乙酰转移酶(aaNAT)催化乙酰辅酶A转乙酰化成芳胺和芳基烷基胺。基于三维结构信息,aaNAT属于gcn5相关的n -乙酰基转移酶超家族,具有保守的乙酰辅酶a结合域(Dyda et al., 2000)。通过序列相似性比较,aaNAT通常分为脊椎动物aaNAT (VT-aaNAT)和非脊椎动物aaNAT (NV-aaNAT) (cazam - catalan et al., 2014)。与哺乳动物相比,昆虫进化出了多种aanat,因此昆虫的功能也更加多样化。本章将对aaNAT的功能、调控、结构和演化等方面的研究进行综述,并为今后害虫防治提供参考。
Function, structure, evolution, regulation of a potent drug target, arylalkylamine N-acetyltransferase.
Arylalkylamine N-acetyltransferase (aaNAT) catalyzes the transacetylation of acetyl coenzyme A to arylamines and arylalkylamines. Based on three-dimensional structural information, aaNAT belongs to the GCN5-related N-acetyltransferases superfamily with a conserved acetyl-CoA binding domain (Dyda et al., 2000). By comparison of sequence similarity, aaNAT is usually divided into vertebrate aaNAT (VT-aaNAT) and non-vertebrate aaNAT (NV-aaNAT) (Cazaméa-Catalan et al., 2014). Insects have evolved multiple aaNATs in comparison to mammals, thus more diverse functions are also reflected in insects. This chapter will summarize previous studies on the function, regulation, structure and evolution of aaNAT, and provide insight into future pest management.
期刊介绍:
Published continuously since 1944, The Advances in Protein Chemistry and Structural Biology series has been the essential resource for protein chemists. Each volume brings forth new information about protocols and analysis of proteins. Each thematically organized volume is guest edited by leading experts in a broad range of protein-related topics.