Morten Sørlie, Malene Billeskov Keller, Peter Westh
{"title":"多糖单加氧酶与糖苷水解酶的相互作用。","authors":"Morten Sørlie, Malene Billeskov Keller, Peter Westh","doi":"10.1042/EBC20220156","DOIUrl":null,"url":null,"abstract":"<p><p>In nature, enzymatic degradation of recalcitrant polysaccharides such as chitin and cellulose takes place by a synergistic interaction between glycoside hydrolases (GHs) and lytic polysaccharide monooxygenases (LPMOs). The two different families of carbohydrate-active enzymes use two different mechanisms when breaking glycosidic bonds between sugar moieties. GHs employ a hydrolytic activity and LPMOs are oxidative. Consequently, the topologies of the active sites differ dramatically. GHs have tunnels or clefts lined with a sheet of aromatic amino acid residues accommodating single polymer chains being threaded into the active site. LPMOs are adapted to bind to the flat crystalline surfaces of chitin and cellulose. It is believed that the LPMO oxidative mechanism provides new chain ends that the GHs can attach to and degrade, often in a processive manner. Indeed, there are many reports of synergies as well as rate enhancements when LPMOs are applied in concert with GHs. Still, these enhancements vary in magnitude with respect to the nature of the GH and the LPMO. Moreover, impediment of GH catalysis is also observed. In the present review, we discuss central works where the interplay between LPMOs and GHs has been studied and comment on future challenges to be addressed to fully use the potential of this interplay to improve enzymatic polysaccharide degradation.</p>","PeriodicalId":11812,"journal":{"name":"Essays in biochemistry","volume":"67 3","pages":"551-559"},"PeriodicalIF":5.6000,"publicationDate":"2023-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"The interplay between lytic polysaccharide monooxygenases and glycoside hydrolases.\",\"authors\":\"Morten Sørlie, Malene Billeskov Keller, Peter Westh\",\"doi\":\"10.1042/EBC20220156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In nature, enzymatic degradation of recalcitrant polysaccharides such as chitin and cellulose takes place by a synergistic interaction between glycoside hydrolases (GHs) and lytic polysaccharide monooxygenases (LPMOs). The two different families of carbohydrate-active enzymes use two different mechanisms when breaking glycosidic bonds between sugar moieties. GHs employ a hydrolytic activity and LPMOs are oxidative. Consequently, the topologies of the active sites differ dramatically. GHs have tunnels or clefts lined with a sheet of aromatic amino acid residues accommodating single polymer chains being threaded into the active site. LPMOs are adapted to bind to the flat crystalline surfaces of chitin and cellulose. It is believed that the LPMO oxidative mechanism provides new chain ends that the GHs can attach to and degrade, often in a processive manner. Indeed, there are many reports of synergies as well as rate enhancements when LPMOs are applied in concert with GHs. Still, these enhancements vary in magnitude with respect to the nature of the GH and the LPMO. Moreover, impediment of GH catalysis is also observed. In the present review, we discuss central works where the interplay between LPMOs and GHs has been studied and comment on future challenges to be addressed to fully use the potential of this interplay to improve enzymatic polysaccharide degradation.</p>\",\"PeriodicalId\":11812,\"journal\":{\"name\":\"Essays in biochemistry\",\"volume\":\"67 3\",\"pages\":\"551-559\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2023-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Essays in biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1042/EBC20220156\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Essays in biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1042/EBC20220156","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
The interplay between lytic polysaccharide monooxygenases and glycoside hydrolases.
In nature, enzymatic degradation of recalcitrant polysaccharides such as chitin and cellulose takes place by a synergistic interaction between glycoside hydrolases (GHs) and lytic polysaccharide monooxygenases (LPMOs). The two different families of carbohydrate-active enzymes use two different mechanisms when breaking glycosidic bonds between sugar moieties. GHs employ a hydrolytic activity and LPMOs are oxidative. Consequently, the topologies of the active sites differ dramatically. GHs have tunnels or clefts lined with a sheet of aromatic amino acid residues accommodating single polymer chains being threaded into the active site. LPMOs are adapted to bind to the flat crystalline surfaces of chitin and cellulose. It is believed that the LPMO oxidative mechanism provides new chain ends that the GHs can attach to and degrade, often in a processive manner. Indeed, there are many reports of synergies as well as rate enhancements when LPMOs are applied in concert with GHs. Still, these enhancements vary in magnitude with respect to the nature of the GH and the LPMO. Moreover, impediment of GH catalysis is also observed. In the present review, we discuss central works where the interplay between LPMOs and GHs has been studied and comment on future challenges to be addressed to fully use the potential of this interplay to improve enzymatic polysaccharide degradation.
期刊介绍:
Essays in Biochemistry publishes short, digestible reviews from experts highlighting recent key topics in biochemistry and the molecular biosciences. Written to be accessible for those not yet immersed in the subject, each article is an up-to-date, self-contained summary of the topic.
Bridging the gap between the latest research and established textbooks, Essays in Biochemistry will tell you what you need to know to begin exploring the field, as each article includes the top take-home messages as summary points.
Each issue of the journal is guest edited by a key opinion leader in the area, and whether you are continuing your studies or moving into a new research area, the Journal gives a complete picture in one place.
Essays in Biochemistry is proud to publish Understanding Biochemistry, an essential online resource for post-16 students, teachers and undergraduates. Providing up-to-date overviews of key concepts in biochemistry and the molecular biosciences, the Understanding Biochemistry issues of Essays in Biochemistry are published annually in October.