具有齐次Robin边界条件的半线上非线性Schrödinger方程。

IF 1.5 1区 数学 Q1 MATHEMATICS
Jae Min Lee, Jonatan Lenells
{"title":"具有齐次Robin边界条件的半线上非线性Schrödinger方程。","authors":"Jae Min Lee,&nbsp;Jonatan Lenells","doi":"10.1112/plms.12493","DOIUrl":null,"url":null,"abstract":"<p><p>We consider the nonlinear Schrödinger equation on the half-line <math> <mrow><mrow><mi>x</mi> <mo>⩾</mo> <mn>0</mn></mrow> </mrow> </math> with a Robin boundary condition at <math> <mrow><mrow><mi>x</mi> <mo>=</mo> <mn>0</mn></mrow> </mrow> </math> and with initial data in the weighted Sobolev space <math> <mrow> <mrow><msup><mi>H</mi> <mrow><mn>1</mn> <mo>,</mo> <mn>1</mn></mrow> </msup> <mrow><mo>(</mo> <msub><mi>R</mi> <mo>+</mo></msub> <mo>)</mo></mrow> </mrow> </mrow> </math> . We prove that there exists a global weak solution of this initial-boundary value problem and provide a representation for the solution in terms of the solution of a Riemann-Hilbert problem. Using this representation, we obtain asymptotic formulas for the long-time behavior of the solution. In particular, by restricting our asymptotic result to solutions whose initial data are close to the initial profile of the stationary one-soliton, we obtain results on the asymptotic stability of the stationary one-soliton under any small perturbation in <math> <mrow> <mrow><msup><mi>H</mi> <mrow><mn>1</mn> <mo>,</mo> <mn>1</mn></mrow> </msup> <mrow><mo>(</mo> <msub><mi>R</mi> <mo>+</mo></msub> <mo>)</mo></mrow> </mrow> </mrow> </math> . In the focusing case, such a result was already established by Deift and Park using different methods, and our work provides an alternative approach to obtain such results. We treat both the focusing and the defocusing versions of the equation.</p>","PeriodicalId":49667,"journal":{"name":"Proceedings of the London Mathematical Society","volume":"126 1","pages":"334-389"},"PeriodicalIF":1.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10091827/pdf/","citationCount":"0","resultStr":"{\"title\":\"The nonlinear Schrödinger equation on the half-line with homogeneous Robin boundary conditions.\",\"authors\":\"Jae Min Lee,&nbsp;Jonatan Lenells\",\"doi\":\"10.1112/plms.12493\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We consider the nonlinear Schrödinger equation on the half-line <math> <mrow><mrow><mi>x</mi> <mo>⩾</mo> <mn>0</mn></mrow> </mrow> </math> with a Robin boundary condition at <math> <mrow><mrow><mi>x</mi> <mo>=</mo> <mn>0</mn></mrow> </mrow> </math> and with initial data in the weighted Sobolev space <math> <mrow> <mrow><msup><mi>H</mi> <mrow><mn>1</mn> <mo>,</mo> <mn>1</mn></mrow> </msup> <mrow><mo>(</mo> <msub><mi>R</mi> <mo>+</mo></msub> <mo>)</mo></mrow> </mrow> </mrow> </math> . We prove that there exists a global weak solution of this initial-boundary value problem and provide a representation for the solution in terms of the solution of a Riemann-Hilbert problem. Using this representation, we obtain asymptotic formulas for the long-time behavior of the solution. In particular, by restricting our asymptotic result to solutions whose initial data are close to the initial profile of the stationary one-soliton, we obtain results on the asymptotic stability of the stationary one-soliton under any small perturbation in <math> <mrow> <mrow><msup><mi>H</mi> <mrow><mn>1</mn> <mo>,</mo> <mn>1</mn></mrow> </msup> <mrow><mo>(</mo> <msub><mi>R</mi> <mo>+</mo></msub> <mo>)</mo></mrow> </mrow> </mrow> </math> . In the focusing case, such a result was already established by Deift and Park using different methods, and our work provides an alternative approach to obtain such results. We treat both the focusing and the defocusing versions of the equation.</p>\",\"PeriodicalId\":49667,\"journal\":{\"name\":\"Proceedings of the London Mathematical Society\",\"volume\":\"126 1\",\"pages\":\"334-389\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10091827/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1112/plms.12493\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1112/plms.12493","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑半线上x大于或等于0的非线性Schrödinger方程,在x = 0处具有Robin边界条件并具有加权Sobolev空间h1, 1 (R +)中的初始数据。证明了该初边值问题的整体弱解的存在性,并用Riemann-Hilbert问题的解表示了该问题的解。利用这种表示,我们得到了解的长时性的渐近公式。特别地,通过将我们的渐近结果限制在初始数据接近平稳单孤子初始轮廓的解上,我们得到了在H 1,1 (R +)中任何小扰动下平稳单孤子渐近稳定性的结果。在聚焦案例中,Deift和Park已经用不同的方法建立了这样的结果,我们的工作提供了一种获得这样结果的替代方法。我们同时处理对焦和散焦的方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The nonlinear Schrödinger equation on the half-line with homogeneous Robin boundary conditions.

The nonlinear Schrödinger equation on the half-line with homogeneous Robin boundary conditions.

We consider the nonlinear Schrödinger equation on the half-line x 0 with a Robin boundary condition at x = 0 and with initial data in the weighted Sobolev space H 1 , 1 ( R + ) . We prove that there exists a global weak solution of this initial-boundary value problem and provide a representation for the solution in terms of the solution of a Riemann-Hilbert problem. Using this representation, we obtain asymptotic formulas for the long-time behavior of the solution. In particular, by restricting our asymptotic result to solutions whose initial data are close to the initial profile of the stationary one-soliton, we obtain results on the asymptotic stability of the stationary one-soliton under any small perturbation in H 1 , 1 ( R + ) . In the focusing case, such a result was already established by Deift and Park using different methods, and our work provides an alternative approach to obtain such results. We treat both the focusing and the defocusing versions of the equation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
82
审稿时长
6-12 weeks
期刊介绍: The Proceedings of the London Mathematical Society is the flagship journal of the LMS. It publishes articles of the highest quality and significance across a broad range of mathematics. There are no page length restrictions for submitted papers. The Proceedings has its own Editorial Board separate from that of the Journal, Bulletin and Transactions of the LMS.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信