Jiancheng Ye, Jiarui Hai, Zidan Wang, Chumei Wei, Jiacheng Song
{"title":"利用自然语言处理和地理空间时间序列模型分析推特上COVID-19疫苗接种情绪动态。","authors":"Jiancheng Ye, Jiarui Hai, Zidan Wang, Chumei Wei, Jiacheng Song","doi":"10.1093/jamiaopen/ooad023","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To develop and apply a natural language processing (NLP)-based approach to analyze public sentiments on social media and their geographic pattern in the United States toward coronavirus disease 2019 (COVID-19) vaccination. We also aim to provide insights to facilitate the understanding of the public attitudes and concerns regarding COVID-19 vaccination.</p><p><strong>Methods: </strong>We collected Tweet posts by the residents in the United States after the dissemination of the COVID-19 vaccine. We performed sentiment analysis based on the Bidirectional Encoder Representations from Transformers (BERT) and qualitative content analysis. Time series models were leveraged to describe sentiment trends. Key topics were analyzed longitudinally and geospatially.</p><p><strong>Results: </strong>A total of 3 198 686 Tweets related to COVID-19 vaccination were extracted from January 2021 to February 2022. 2 358 783 Tweets were identified to contain clear opinions, among which 824 755 (35.0%) expressed negative opinions towards vaccination while 1 534 028 (65.0%) demonstrated positive opinions. The accuracy of the BERT model was 79.67%. The key hashtag-based topics include Pfizer, breaking, wearamask, and smartnews. The sentiment towards vaccination across the states showed manifest variability. Key barriers to vaccination include mistrust, hesitancy, safety concern, misinformation, and inequity.</p><p><strong>Conclusion: </strong>We found that opinions toward the COVID-19 vaccination varied across different places and over time. This study demonstrates the potential of an analytical pipeline, which integrates NLP-enabled modeling, time series, and geospatial analyses of social media data. Such analyses could enable real-time assessment, at scale, of public confidence and trust in COVID-19 vaccination, help address the concerns of vaccine skeptics, and provide support for developing tailored policies and communication strategies to maximize uptake.</p>","PeriodicalId":36278,"journal":{"name":"JAMIA Open","volume":"6 2","pages":"ooad023"},"PeriodicalIF":2.5000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10097455/pdf/","citationCount":"6","resultStr":"{\"title\":\"Leveraging natural language processing and geospatial time series model to analyze COVID-19 vaccination sentiment dynamics on Tweets.\",\"authors\":\"Jiancheng Ye, Jiarui Hai, Zidan Wang, Chumei Wei, Jiacheng Song\",\"doi\":\"10.1093/jamiaopen/ooad023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>To develop and apply a natural language processing (NLP)-based approach to analyze public sentiments on social media and their geographic pattern in the United States toward coronavirus disease 2019 (COVID-19) vaccination. We also aim to provide insights to facilitate the understanding of the public attitudes and concerns regarding COVID-19 vaccination.</p><p><strong>Methods: </strong>We collected Tweet posts by the residents in the United States after the dissemination of the COVID-19 vaccine. We performed sentiment analysis based on the Bidirectional Encoder Representations from Transformers (BERT) and qualitative content analysis. Time series models were leveraged to describe sentiment trends. Key topics were analyzed longitudinally and geospatially.</p><p><strong>Results: </strong>A total of 3 198 686 Tweets related to COVID-19 vaccination were extracted from January 2021 to February 2022. 2 358 783 Tweets were identified to contain clear opinions, among which 824 755 (35.0%) expressed negative opinions towards vaccination while 1 534 028 (65.0%) demonstrated positive opinions. The accuracy of the BERT model was 79.67%. The key hashtag-based topics include Pfizer, breaking, wearamask, and smartnews. The sentiment towards vaccination across the states showed manifest variability. Key barriers to vaccination include mistrust, hesitancy, safety concern, misinformation, and inequity.</p><p><strong>Conclusion: </strong>We found that opinions toward the COVID-19 vaccination varied across different places and over time. This study demonstrates the potential of an analytical pipeline, which integrates NLP-enabled modeling, time series, and geospatial analyses of social media data. Such analyses could enable real-time assessment, at scale, of public confidence and trust in COVID-19 vaccination, help address the concerns of vaccine skeptics, and provide support for developing tailored policies and communication strategies to maximize uptake.</p>\",\"PeriodicalId\":36278,\"journal\":{\"name\":\"JAMIA Open\",\"volume\":\"6 2\",\"pages\":\"ooad023\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10097455/pdf/\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JAMIA Open\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/jamiaopen/ooad023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JAMIA Open","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jamiaopen/ooad023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
Leveraging natural language processing and geospatial time series model to analyze COVID-19 vaccination sentiment dynamics on Tweets.
Objective: To develop and apply a natural language processing (NLP)-based approach to analyze public sentiments on social media and their geographic pattern in the United States toward coronavirus disease 2019 (COVID-19) vaccination. We also aim to provide insights to facilitate the understanding of the public attitudes and concerns regarding COVID-19 vaccination.
Methods: We collected Tweet posts by the residents in the United States after the dissemination of the COVID-19 vaccine. We performed sentiment analysis based on the Bidirectional Encoder Representations from Transformers (BERT) and qualitative content analysis. Time series models were leveraged to describe sentiment trends. Key topics were analyzed longitudinally and geospatially.
Results: A total of 3 198 686 Tweets related to COVID-19 vaccination were extracted from January 2021 to February 2022. 2 358 783 Tweets were identified to contain clear opinions, among which 824 755 (35.0%) expressed negative opinions towards vaccination while 1 534 028 (65.0%) demonstrated positive opinions. The accuracy of the BERT model was 79.67%. The key hashtag-based topics include Pfizer, breaking, wearamask, and smartnews. The sentiment towards vaccination across the states showed manifest variability. Key barriers to vaccination include mistrust, hesitancy, safety concern, misinformation, and inequity.
Conclusion: We found that opinions toward the COVID-19 vaccination varied across different places and over time. This study demonstrates the potential of an analytical pipeline, which integrates NLP-enabled modeling, time series, and geospatial analyses of social media data. Such analyses could enable real-time assessment, at scale, of public confidence and trust in COVID-19 vaccination, help address the concerns of vaccine skeptics, and provide support for developing tailored policies and communication strategies to maximize uptake.