冠状病毒、溶酶体和继发性细菌感染:冠状病毒比宿主聪明。

IF 2.6 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Xiaohua Peng, Charles S Dela Cruz, Lokesh Sharma
{"title":"冠状病毒、溶酶体和继发性细菌感染:冠状病毒比宿主聪明。","authors":"Xiaohua Peng,&nbsp;Charles S Dela Cruz,&nbsp;Lokesh Sharma","doi":"10.1089/dna.2023.0002","DOIUrl":null,"url":null,"abstract":"<p><p>Lysosomes are key organelles that contribute to homeostatic functions such as autophagy-mediated recycling of cellular components and innate immune response through phagocytosis-mediated pathogen killing during infections. Viruses such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), has developed unique adaptation to not only avoid lysosome-mediated destruction but also actively utilize lysosomal machinery to both enter and exit cells. To survive the highly hostile lysosomal environment, coronaviruses deacidify the lysosomes, potentially by manipulating H+ ion exchange across the lysosomal lumen, ensuring coronavirus survival. At the same time, this deacidification not only impairs cellular homeostatic functions such as autophagy but also renders the host susceptible to secondary bacterial infections. Furthermore, lysosomal enzymes promote extensive cell death and tissue damage during secondary bacterial infections. Thus, targeting lysosomal pathways provide a great opportunity to limit both viral replication and subsequent negative impact on host immunity against secondary bacterial infections.</p>","PeriodicalId":11248,"journal":{"name":"DNA and cell biology","volume":"42 4","pages":"189-193"},"PeriodicalIF":2.6000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Coronaviruses, Lysosomes, and Secondary Bacterial Infections: Coronaviruses Outsmart the Host.\",\"authors\":\"Xiaohua Peng,&nbsp;Charles S Dela Cruz,&nbsp;Lokesh Sharma\",\"doi\":\"10.1089/dna.2023.0002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Lysosomes are key organelles that contribute to homeostatic functions such as autophagy-mediated recycling of cellular components and innate immune response through phagocytosis-mediated pathogen killing during infections. Viruses such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), has developed unique adaptation to not only avoid lysosome-mediated destruction but also actively utilize lysosomal machinery to both enter and exit cells. To survive the highly hostile lysosomal environment, coronaviruses deacidify the lysosomes, potentially by manipulating H+ ion exchange across the lysosomal lumen, ensuring coronavirus survival. At the same time, this deacidification not only impairs cellular homeostatic functions such as autophagy but also renders the host susceptible to secondary bacterial infections. Furthermore, lysosomal enzymes promote extensive cell death and tissue damage during secondary bacterial infections. Thus, targeting lysosomal pathways provide a great opportunity to limit both viral replication and subsequent negative impact on host immunity against secondary bacterial infections.</p>\",\"PeriodicalId\":11248,\"journal\":{\"name\":\"DNA and cell biology\",\"volume\":\"42 4\",\"pages\":\"189-193\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DNA and cell biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1089/dna.2023.0002\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DNA and cell biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/dna.2023.0002","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 1

摘要

溶酶体是促进体内平衡功能的关键细胞器,如自噬介导的细胞成分循环和感染期间通过吞噬介导的病原体杀死的先天免疫反应。2019冠状病毒病(COVID-19)的病原体严重急性呼吸综合征冠状病毒2 (SARS-CoV-2)等病毒已经发展出独特的适应性,不仅可以避免溶酶体介导的破坏,还可以积极利用溶酶体机制进入和退出细胞。为了在高度恶劣的溶酶体环境中生存,冠状病毒可能通过操纵溶酶体腔内的H+离子交换使溶酶体脱酸,从而确保冠状病毒的存活。同时,这种脱酸不仅损害细胞自噬等稳态功能,而且使宿主易受继发性细菌感染。此外,在继发性细菌感染期间,溶酶体酶促进广泛的细胞死亡和组织损伤。因此,靶向溶酶体途径提供了很好的机会来限制病毒复制和随后对宿主免疫对继发性细菌感染的负面影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Coronaviruses, Lysosomes, and Secondary Bacterial Infections: Coronaviruses Outsmart the Host.

Lysosomes are key organelles that contribute to homeostatic functions such as autophagy-mediated recycling of cellular components and innate immune response through phagocytosis-mediated pathogen killing during infections. Viruses such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), has developed unique adaptation to not only avoid lysosome-mediated destruction but also actively utilize lysosomal machinery to both enter and exit cells. To survive the highly hostile lysosomal environment, coronaviruses deacidify the lysosomes, potentially by manipulating H+ ion exchange across the lysosomal lumen, ensuring coronavirus survival. At the same time, this deacidification not only impairs cellular homeostatic functions such as autophagy but also renders the host susceptible to secondary bacterial infections. Furthermore, lysosomal enzymes promote extensive cell death and tissue damage during secondary bacterial infections. Thus, targeting lysosomal pathways provide a great opportunity to limit both viral replication and subsequent negative impact on host immunity against secondary bacterial infections.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
DNA and cell biology
DNA and cell biology 生物-生化与分子生物学
CiteScore
6.60
自引率
0.00%
发文量
93
审稿时长
1.5 months
期刊介绍: DNA and Cell Biology delivers authoritative, peer-reviewed research on all aspects of molecular and cellular biology, with a unique focus on combining mechanistic and clinical studies to drive the field forward. DNA and Cell Biology coverage includes: Gene Structure, Function, and Regulation Gene regulation Molecular mechanisms of cell activation Mechanisms of transcriptional, translational, or epigenetic control of gene expression Molecular Medicine Molecular pathogenesis Genetic approaches to cancer and autoimmune diseases Translational studies in cell and molecular biology Cellular Organelles Autophagy Apoptosis P bodies Peroxisosomes Protein Biosynthesis and Degradation Regulation of protein synthesis Post-translational modifications Control of degradation Cell-Autonomous Inflammation and Host Cell Response to Infection Responses to cytokines and other physiological mediators Evasive pathways of pathogens.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信