为 COVID-19 安排抗病毒药物和免疫调节剂的脉冲神经控制。

Gustavo Hernandez-Mejia, Edgar N Sánchez, Victor M Chan, E A Hernandez-Vargas
{"title":"为 COVID-19 安排抗病毒药物和免疫调节剂的脉冲神经控制。","authors":"Gustavo Hernandez-Mejia, Edgar N Sánchez, Victor M Chan, E A Hernandez-Vargas","doi":"10.1109/cdc51059.2022.9992454","DOIUrl":null,"url":null,"abstract":"<p><p>New SARS-CoV-2 variants escaping the effect of vaccines are an eminent threat. The use of antivirals to inhibit the viral replication cycle or immunomodulators to regulate host immune responses can help to tackle the viral infection at the host level. To evaluate the potential use of these therapies, we propose the application of an inverse optimal neural controller to a mathematical model that represents SARS-CoV-2 dynamics in the host. Antiviral effects and immune responses are considered as the control actions. The variability between infected hosts can be large, thus, the host infection dynamics are identified based on a Recurrent High-Order Neural Network (RHONN) trained with the Extended Kalman Filter (EKF). The performance of the control strategies is tested by employing a Monte Carlo analysis. Simulation results present different scenarios where potential antivirals and immunomodulators could reduce the viral load.</p>","PeriodicalId":74517,"journal":{"name":"Proceedings of the ... IEEE Conference on Decision & Control. IEEE Conference on Decision & Control","volume":"2022 ","pages":"5633-5638"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10084739/pdf/","citationCount":"0","resultStr":"{\"title\":\"Impulsive Neural Control to Schedule Antivirals and Immunomodulators for COVID-19.\",\"authors\":\"Gustavo Hernandez-Mejia, Edgar N Sánchez, Victor M Chan, E A Hernandez-Vargas\",\"doi\":\"10.1109/cdc51059.2022.9992454\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>New SARS-CoV-2 variants escaping the effect of vaccines are an eminent threat. The use of antivirals to inhibit the viral replication cycle or immunomodulators to regulate host immune responses can help to tackle the viral infection at the host level. To evaluate the potential use of these therapies, we propose the application of an inverse optimal neural controller to a mathematical model that represents SARS-CoV-2 dynamics in the host. Antiviral effects and immune responses are considered as the control actions. The variability between infected hosts can be large, thus, the host infection dynamics are identified based on a Recurrent High-Order Neural Network (RHONN) trained with the Extended Kalman Filter (EKF). The performance of the control strategies is tested by employing a Monte Carlo analysis. Simulation results present different scenarios where potential antivirals and immunomodulators could reduce the viral load.</p>\",\"PeriodicalId\":74517,\"journal\":{\"name\":\"Proceedings of the ... IEEE Conference on Decision & Control. IEEE Conference on Decision & Control\",\"volume\":\"2022 \",\"pages\":\"5633-5638\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10084739/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... IEEE Conference on Decision & Control. IEEE Conference on Decision & Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/cdc51059.2022.9992454\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... IEEE Conference on Decision & Control. IEEE Conference on Decision & Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/cdc51059.2022.9992454","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/10 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

新的 SARS-CoV-2 变异株可以逃脱疫苗的作用,这是一个突出的威胁。使用抗病毒药物抑制病毒复制周期,或使用免疫调节剂调节宿主免疫反应,有助于在宿主水平上解决病毒感染问题。为了评估这些疗法的潜在用途,我们建议将反向最优神经控制器应用于一个代表宿主体内 SARS-CoV-2 动态的数学模型。抗病毒效果和免疫反应被视为控制行动。感染宿主之间的变异性可能很大,因此,宿主感染动态是基于用扩展卡尔曼滤波器(EKF)训练的递归高阶神经网络(RHONN)确定的。通过蒙特卡罗分析,对控制策略的性能进行了测试。模拟结果显示了潜在的抗病毒药物和免疫调节剂可降低病毒载量的不同情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Impulsive Neural Control to Schedule Antivirals and Immunomodulators for COVID-19.

New SARS-CoV-2 variants escaping the effect of vaccines are an eminent threat. The use of antivirals to inhibit the viral replication cycle or immunomodulators to regulate host immune responses can help to tackle the viral infection at the host level. To evaluate the potential use of these therapies, we propose the application of an inverse optimal neural controller to a mathematical model that represents SARS-CoV-2 dynamics in the host. Antiviral effects and immune responses are considered as the control actions. The variability between infected hosts can be large, thus, the host infection dynamics are identified based on a Recurrent High-Order Neural Network (RHONN) trained with the Extended Kalman Filter (EKF). The performance of the control strategies is tested by employing a Monte Carlo analysis. Simulation results present different scenarios where potential antivirals and immunomodulators could reduce the viral load.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信