Fang Yu, Jie Yang, Jia Chen, Xiaoyue Wang, Qingli Cai, Yani He, Kehong Chen
{"title":"骨髓间充质干细胞衍生外泌体减轻腹膜透析相关腹膜损伤。","authors":"Fang Yu, Jie Yang, Jia Chen, Xiaoyue Wang, Qingli Cai, Yani He, Kehong Chen","doi":"10.1089/scd.2022.0244","DOIUrl":null,"url":null,"abstract":"<p><p>Peritoneal fibrosis is a critical sequela that limits the application of peritoneal dialysis (PD). This study explored the role and mechanism of bone marrow mesenchymal stem cell-derived exosomes (BMSC-Exos) in preventing PD-associated peritoneal injury. C57BL/6 mice were randomized into three groups: a control (saline), peritoneal injury [2.5% glucose peritoneal dialysate + lipopolysaccharide (LPS)], and peritoneal injury + exosome group. After 6 weeks, mice were dissected, and the parietal peritoneum was collected. The level of peritoneal structural and functional damage was assessed. Additionally, transcriptome analysis of the peritoneum and miRNA sequencing on BMSC-Exos were performed. The parietal peritoneum had significantly thickened, and peritoneal function was impaired in the peritoneal injury group. Peritoneal structural and functional damage was significantly reduced after exosome treatment, while peritoneal inflammation, fibrosis, angiogenesis, and mesothelial damage significantly increased. Transcriptomic analysis showed that the BMSC-Exos affected the cell cycle process, cell differentiation, and inflammatory response regulation. Significant pathways in the exosome group were enriched by inflammation, immune response, and cell differentiation, which constitute a molecular network that regulates the peritoneal protective mechanism. Additionally, inflammatory factors (TNF-α, IL-1β), fibrosis markers (α-SMA, collagen-III, fibronectin), profibrotic cytokines (TGF-β1), and angiogenesis-related factor (VEGF) were downregulated at the mRNA and protein levels through BMSC-Exos treatment. BMSC-Exos treatment can prevent peritoneal injury by inhibiting peritoneal fibrosis, inflammation, and angiogenesis, showing a multitarget regulatory effect. Therefore, BMSC-Exos therapy might be a new therapeutic strategy for treating peritoneal injury.</p>","PeriodicalId":21934,"journal":{"name":"Stem cells and development","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Bone Marrow Mesenchymal Stem Cell-Derived Exosomes Alleviate Peritoneal Dialysis-Associated Peritoneal Injury.\",\"authors\":\"Fang Yu, Jie Yang, Jia Chen, Xiaoyue Wang, Qingli Cai, Yani He, Kehong Chen\",\"doi\":\"10.1089/scd.2022.0244\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Peritoneal fibrosis is a critical sequela that limits the application of peritoneal dialysis (PD). This study explored the role and mechanism of bone marrow mesenchymal stem cell-derived exosomes (BMSC-Exos) in preventing PD-associated peritoneal injury. C57BL/6 mice were randomized into three groups: a control (saline), peritoneal injury [2.5% glucose peritoneal dialysate + lipopolysaccharide (LPS)], and peritoneal injury + exosome group. After 6 weeks, mice were dissected, and the parietal peritoneum was collected. The level of peritoneal structural and functional damage was assessed. Additionally, transcriptome analysis of the peritoneum and miRNA sequencing on BMSC-Exos were performed. The parietal peritoneum had significantly thickened, and peritoneal function was impaired in the peritoneal injury group. Peritoneal structural and functional damage was significantly reduced after exosome treatment, while peritoneal inflammation, fibrosis, angiogenesis, and mesothelial damage significantly increased. Transcriptomic analysis showed that the BMSC-Exos affected the cell cycle process, cell differentiation, and inflammatory response regulation. Significant pathways in the exosome group were enriched by inflammation, immune response, and cell differentiation, which constitute a molecular network that regulates the peritoneal protective mechanism. Additionally, inflammatory factors (TNF-α, IL-1β), fibrosis markers (α-SMA, collagen-III, fibronectin), profibrotic cytokines (TGF-β1), and angiogenesis-related factor (VEGF) were downregulated at the mRNA and protein levels through BMSC-Exos treatment. BMSC-Exos treatment can prevent peritoneal injury by inhibiting peritoneal fibrosis, inflammation, and angiogenesis, showing a multitarget regulatory effect. Therefore, BMSC-Exos therapy might be a new therapeutic strategy for treating peritoneal injury.</p>\",\"PeriodicalId\":21934,\"journal\":{\"name\":\"Stem cells and development\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stem cells and development\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/scd.2022.0244\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem cells and development","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/scd.2022.0244","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
Peritoneal fibrosis is a critical sequela that limits the application of peritoneal dialysis (PD). This study explored the role and mechanism of bone marrow mesenchymal stem cell-derived exosomes (BMSC-Exos) in preventing PD-associated peritoneal injury. C57BL/6 mice were randomized into three groups: a control (saline), peritoneal injury [2.5% glucose peritoneal dialysate + lipopolysaccharide (LPS)], and peritoneal injury + exosome group. After 6 weeks, mice were dissected, and the parietal peritoneum was collected. The level of peritoneal structural and functional damage was assessed. Additionally, transcriptome analysis of the peritoneum and miRNA sequencing on BMSC-Exos were performed. The parietal peritoneum had significantly thickened, and peritoneal function was impaired in the peritoneal injury group. Peritoneal structural and functional damage was significantly reduced after exosome treatment, while peritoneal inflammation, fibrosis, angiogenesis, and mesothelial damage significantly increased. Transcriptomic analysis showed that the BMSC-Exos affected the cell cycle process, cell differentiation, and inflammatory response regulation. Significant pathways in the exosome group were enriched by inflammation, immune response, and cell differentiation, which constitute a molecular network that regulates the peritoneal protective mechanism. Additionally, inflammatory factors (TNF-α, IL-1β), fibrosis markers (α-SMA, collagen-III, fibronectin), profibrotic cytokines (TGF-β1), and angiogenesis-related factor (VEGF) were downregulated at the mRNA and protein levels through BMSC-Exos treatment. BMSC-Exos treatment can prevent peritoneal injury by inhibiting peritoneal fibrosis, inflammation, and angiogenesis, showing a multitarget regulatory effect. Therefore, BMSC-Exos therapy might be a new therapeutic strategy for treating peritoneal injury.
期刊介绍:
Stem Cells and Development is globally recognized as the trusted source for critical, even controversial coverage of emerging hypotheses and novel findings. With a focus on stem cells of all tissue types and their potential therapeutic applications, the Journal provides clinical, basic, and translational scientists with cutting-edge research and findings.
Stem Cells and Development coverage includes:
Embryogenesis and adult counterparts of this process
Physical processes linking stem cells, primary cell function, and structural development
Hypotheses exploring the relationship between genotype and phenotype
Development of vasculature, CNS, and other germ layer development and defects
Pluripotentiality of embryonic and somatic stem cells
The role of genetic and epigenetic factors in development